HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocsh Structured version   Visualization version   GIF version

Theorem ocsh 31315
Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocsh (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )

Proof of Theorem ocsh
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocval 31312 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
2 ssrab2 4103 . . . 4 {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0} ⊆ ℋ
31, 2eqsstrdi 4063 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
4 ssel 4002 . . . . . . 7 (𝐴 ⊆ ℋ → (𝑦𝐴𝑦 ∈ ℋ))
5 hi01 31128 . . . . . . 7 (𝑦 ∈ ℋ → (0 ·ih 𝑦) = 0)
64, 5syl6 35 . . . . . 6 (𝐴 ⊆ ℋ → (𝑦𝐴 → (0 ·ih 𝑦) = 0))
76ralrimiv 3151 . . . . 5 (𝐴 ⊆ ℋ → ∀𝑦𝐴 (0 ·ih 𝑦) = 0)
8 ax-hv0cl 31035 . . . . 5 0 ∈ ℋ
97, 8jctil 519 . . . 4 (𝐴 ⊆ ℋ → (0 ∈ ℋ ∧ ∀𝑦𝐴 (0 ·ih 𝑦) = 0))
10 ocel 31313 . . . 4 (𝐴 ⊆ ℋ → (0 ∈ (⊥‘𝐴) ↔ (0 ∈ ℋ ∧ ∀𝑦𝐴 (0 ·ih 𝑦) = 0)))
119, 10mpbird 257 . . 3 (𝐴 ⊆ ℋ → 0 ∈ (⊥‘𝐴))
123, 11jca 511 . 2 (𝐴 ⊆ ℋ → ((⊥‘𝐴) ⊆ ℋ ∧ 0 ∈ (⊥‘𝐴)))
13 ssel2 4003 . . . . . . . . . 10 ((𝐴 ⊆ ℋ ∧ 𝑧𝐴) → 𝑧 ∈ ℋ)
14 ax-his2 31115 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) ·ih 𝑧) = ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)))
15143expa 1118 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) ·ih 𝑧) = ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)))
16 oveq12 7457 . . . . . . . . . . . . . 14 (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)) = (0 + 0))
17 00id 11465 . . . . . . . . . . . . . 14 (0 + 0) = 0
1816, 17eqtrdi 2796 . . . . . . . . . . . . 13 (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 ·ih 𝑧) + (𝑦 ·ih 𝑧)) = 0)
1915, 18sylan9eq 2800 . . . . . . . . . . . 12 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) → ((𝑥 + 𝑦) ·ih 𝑧) = 0)
2019ex 412 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2120ancoms 458 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2213, 21sylan 579 . . . . . . . . 9 (((𝐴 ⊆ ℋ ∧ 𝑧𝐴) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2322an32s 651 . . . . . . . 8 (((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧𝐴) → (((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2423ralimdva 3173 . . . . . . 7 ((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) → ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2524imdistanda 571 . . . . . 6 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0)))
26 hvaddcl 31044 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
2726anim1i 614 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0) → ((𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0))
2825, 27syl6 35 . . . . 5 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) → ((𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0)))
29 ocel 31313 . . . . . . 7 (𝐴 ⊆ ℋ → (𝑥 ∈ (⊥‘𝐴) ↔ (𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0)))
30 ocel 31313 . . . . . . 7 (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘𝐴) ↔ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
3129, 30anbi12d 631 . . . . . 6 (𝐴 ⊆ ℋ → ((𝑥 ∈ (⊥‘𝐴) ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ ((𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0) ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0))))
32 an4 655 . . . . . . 7 (((𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0) ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0 ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
33 r19.26 3117 . . . . . . . 8 (∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0) ↔ (∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0 ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0))
3433anbi2i 622 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0 ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
3532, 34bitr4i 278 . . . . . 6 (((𝑥 ∈ ℋ ∧ ∀𝑧𝐴 (𝑥 ·ih 𝑧) = 0) ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0)))
3631, 35bitrdi 287 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 ∈ (⊥‘𝐴) ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 ·ih 𝑧) = 0 ∧ (𝑦 ·ih 𝑧) = 0))))
37 ocel 31313 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 + 𝑦) ∈ (⊥‘𝐴) ↔ ((𝑥 + 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 + 𝑦) ·ih 𝑧) = 0)))
3828, 36, 373imtr4d 294 . . . 4 (𝐴 ⊆ ℋ → ((𝑥 ∈ (⊥‘𝐴) ∧ 𝑦 ∈ (⊥‘𝐴)) → (𝑥 + 𝑦) ∈ (⊥‘𝐴)))
3938ralrimivv 3206 . . 3 (𝐴 ⊆ ℋ → ∀𝑥 ∈ (⊥‘𝐴)∀𝑦 ∈ (⊥‘𝐴)(𝑥 + 𝑦) ∈ (⊥‘𝐴))
40 mul01 11469 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
41 oveq2 7456 . . . . . . . . . . . . . 14 ((𝑦 ·ih 𝑧) = 0 → (𝑥 · (𝑦 ·ih 𝑧)) = (𝑥 · 0))
4241eqeq1d 2742 . . . . . . . . . . . . 13 ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · (𝑦 ·ih 𝑧)) = 0 ↔ (𝑥 · 0) = 0))
4340, 42syl5ibrcom 247 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑦 ·ih 𝑧) = 0 → (𝑥 · (𝑦 ·ih 𝑧)) = 0))
4443ad2antrl 727 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑦 ·ih 𝑧) = 0 → (𝑥 · (𝑦 ·ih 𝑧)) = 0))
45 ax-his3 31116 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) ·ih 𝑧) = (𝑥 · (𝑦 ·ih 𝑧)))
4645eqeq1d 2742 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (((𝑥 · 𝑦) ·ih 𝑧) = 0 ↔ (𝑥 · (𝑦 ·ih 𝑧)) = 0))
47463expa 1118 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑥 · 𝑦) ·ih 𝑧) = 0 ↔ (𝑥 · (𝑦 ·ih 𝑧)) = 0))
4847ancoms 458 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (((𝑥 · 𝑦) ·ih 𝑧) = 0 ↔ (𝑥 · (𝑦 ·ih 𝑧)) = 0))
4944, 48sylibrd 259 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5013, 49sylan 579 . . . . . . . . 9 (((𝐴 ⊆ ℋ ∧ 𝑧𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5150an32s 651 . . . . . . . 8 (((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ 𝑧𝐴) → ((𝑦 ·ih 𝑧) = 0 → ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5251ralimdva 3173 . . . . . . 7 ((𝐴 ⊆ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0 → ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5352imdistanda 571 . . . . . 6 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0)))
54 hvmulcl 31045 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
5554anim1i 614 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0) → ((𝑥 · 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0))
5653, 55syl6 35 . . . . 5 (𝐴 ⊆ ℋ → (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0) → ((𝑥 · 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0)))
5730anbi2d 629 . . . . . 6 (𝐴 ⊆ ℋ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ (𝑥 ∈ ℂ ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0))))
58 anass 468 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0) ↔ (𝑥 ∈ ℂ ∧ (𝑦 ∈ ℋ ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
5957, 58bitr4di 289 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (⊥‘𝐴)) ↔ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ ∀𝑧𝐴 (𝑦 ·ih 𝑧) = 0)))
60 ocel 31313 . . . . 5 (𝐴 ⊆ ℋ → ((𝑥 · 𝑦) ∈ (⊥‘𝐴) ↔ ((𝑥 · 𝑦) ∈ ℋ ∧ ∀𝑧𝐴 ((𝑥 · 𝑦) ·ih 𝑧) = 0)))
6156, 59, 603imtr4d 294 . . . 4 (𝐴 ⊆ ℋ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (⊥‘𝐴)) → (𝑥 · 𝑦) ∈ (⊥‘𝐴)))
6261ralrimivv 3206 . . 3 (𝐴 ⊆ ℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ (⊥‘𝐴)(𝑥 · 𝑦) ∈ (⊥‘𝐴))
6339, 62jca 511 . 2 (𝐴 ⊆ ℋ → (∀𝑥 ∈ (⊥‘𝐴)∀𝑦 ∈ (⊥‘𝐴)(𝑥 + 𝑦) ∈ (⊥‘𝐴) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (⊥‘𝐴)(𝑥 · 𝑦) ∈ (⊥‘𝐴)))
64 issh2 31241 . 2 ((⊥‘𝐴) ∈ S ↔ (((⊥‘𝐴) ⊆ ℋ ∧ 0 ∈ (⊥‘𝐴)) ∧ (∀𝑥 ∈ (⊥‘𝐴)∀𝑦 ∈ (⊥‘𝐴)(𝑥 + 𝑦) ∈ (⊥‘𝐴) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (⊥‘𝐴)(𝑥 · 𝑦) ∈ (⊥‘𝐴))))
6512, 63, 64sylanbrc 582 1 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   + caddc 11187   · cmul 11189  chba 30951   + cva 30952   · csm 30953   ·ih csp 30954  0c0v 30956   S csh 30960  cort 30962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hilex 31031  ax-hfvadd 31032  ax-hv0cl 31035  ax-hfvmul 31037  ax-hvmul0 31042  ax-hfi 31111  ax-his2 31115  ax-his3 31116
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sh 31239  df-oc 31284
This theorem is referenced by:  shocsh  31316  ocss  31317  occl  31336  spanssoc  31381  ssjo  31479  chscllem2  31670
  Copyright terms: Public domain W3C validator