HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hiassdi Structured version   Visualization version   GIF version

Theorem hiassdi 31070
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hiassdi (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷)))

Proof of Theorem hiassdi
StepHypRef Expression
1 hvmulcl 30992 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 ax-his2 31062 . . . 4 (((𝐴 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)))
323expb 1120 . . 3 (((𝐴 · 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)))
41, 3sylan 580 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)))
5 ax-his3 31063 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷)))
653expa 1118 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷)))
76adantrl 716 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷)))
87oveq1d 7384 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷)))
94, 8eqtrd 2764 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042   + caddc 11047   · cmul 11049  chba 30898   + cva 30899   · csm 30900   ·ih csp 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-hfvmul 30984  ax-his2 31062  ax-his3 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372
This theorem is referenced by:  unoplin  31899  hmoplin  31921
  Copyright terms: Public domain W3C validator