![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hiassdi | Structured version Visualization version GIF version |
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hiassdi | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 31045 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
2 | ax-his2 31115 | . . . 4 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷))) | |
3 | 2 | 3expb 1120 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷))) |
4 | 1, 3 | sylan 579 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷))) |
5 | ax-his3 31116 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷))) | |
6 | 5 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷))) |
7 | 6 | adantrl 715 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷))) |
8 | 7 | oveq1d 7463 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) |
9 | 4, 8 | eqtrd 2780 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ·ℎ 𝐵) +ℎ 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 · cmul 11189 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 ·ih csp 30954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hfvmul 31037 ax-his2 31115 ax-his3 31116 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 |
This theorem is referenced by: unoplin 31952 hmoplin 31974 |
Copyright terms: Public domain | W3C validator |