HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hiassdi Structured version   Visualization version   GIF version

Theorem hiassdi 31123
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hiassdi (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷)))

Proof of Theorem hiassdi
StepHypRef Expression
1 hvmulcl 31045 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 ax-his2 31115 . . . 4 (((𝐴 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)))
323expb 1120 . . 3 (((𝐴 · 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)))
41, 3sylan 579 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)))
5 ax-his3 31116 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷)))
653expa 1118 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷)))
76adantrl 715 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · 𝐵) ·ih 𝐷) = (𝐴 · (𝐵 ·ih 𝐷)))
87oveq1d 7463 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) ·ih 𝐷) + (𝐶 ·ih 𝐷)) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷)))
94, 8eqtrd 2780 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 · 𝐵) + 𝐶) ·ih 𝐷) = ((𝐴 · (𝐵 ·ih 𝐷)) + (𝐶 ·ih 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  chba 30951   + cva 30952   · csm 30953   ·ih csp 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hfvmul 31037  ax-his2 31115  ax-his3 31116
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451
This theorem is referenced by:  unoplin  31952  hmoplin  31974
  Copyright terms: Public domain W3C validator