MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trintss Structured version   Visualization version   GIF version

Theorem trintss 5153
Description: Any nonempty transitive class includes its intersection. Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011.) (Proof shortened by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
trintss ((Tr 𝐴𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem trintss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4260 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 intss1 4853 . . . . 5 (𝑥𝐴 𝐴𝑥)
3 trss 5145 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
43com12 32 . . . . 5 (𝑥𝐴 → (Tr 𝐴𝑥𝐴))
5 sstr2 3922 . . . . 5 ( 𝐴𝑥 → (𝑥𝐴 𝐴𝐴))
62, 4, 5sylsyld 61 . . . 4 (𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
76exlimiv 1931 . . 3 (∃𝑥 𝑥𝐴 → (Tr 𝐴 𝐴𝐴))
81, 7sylbi 220 . 2 (𝐴 ≠ ∅ → (Tr 𝐴 𝐴𝐴))
98impcom 411 1 ((Tr 𝐴𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wex 1781  wcel 2111  wne 2987  wss 3881  c0 4243   cint 4838  Tr wtr 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-uni 4801  df-int 4839  df-tr 5137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator