| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trintss | Structured version Visualization version GIF version | ||
| Description: Any nonempty transitive class includes its intersection. Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011.) (Proof shortened by Andrew Salmon, 14-Nov-2011.) |
| Ref | Expression |
|---|---|
| trintss | ⊢ ((Tr 𝐴 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | intss1 4915 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 3 | trss 5212 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 4 | 3 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → 𝑥 ⊆ 𝐴)) |
| 5 | sstr2 3937 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → ∩ 𝐴 ⊆ 𝐴)) | |
| 6 | 2, 4, 5 | sylsyld 61 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
| 7 | 6 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
| 8 | 1, 7 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (Tr 𝐴 → ∩ 𝐴 ⊆ 𝐴)) |
| 9 | 8 | impcom 407 | 1 ⊢ ((Tr 𝐴 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 ∩ cint 4899 Tr wtr 5202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 df-uni 4861 df-int 4900 df-tr 5203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |