| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version | ||
| Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5234. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
| Ref | Expression |
|---|---|
| zfrep5.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | funimaexg 6603 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 “ cima 5641 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 |
| This theorem is referenced by: isarep2 6608 isofr 7317 isose 7318 f1opw 7645 f1oweALT 7951 ttrclse 9680 tz9.12lem2 9741 hsmexlem4 10382 hsmexlem5 10383 zorn2lem7 10455 uniimadom 10497 zexALT 12549 psdmul 22053 fbasrn 23771 oldf 27765 madefi 27824 negsproplem2 27935 precsexlem10 28118 seqsex 28179 noseqex 28183 zsex 28268 dimval 33596 dimvalfi 33597 onvf1odlem4 35093 onvf1od 35094 fnwe2lem2 43040 relpfr 44944 orbitex 44945 permaxpow 44999 permaxun 45001 permac8prim 45004 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |