| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version | ||
| Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5221. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
| Ref | Expression |
|---|---|
| zfrep5.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | funimaexg 6573 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 “ cima 5626 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 |
| This theorem is referenced by: isarep2 6576 isofr 7283 isose 7284 f1opw 7609 f1oweALT 7914 ttrclse 9642 tz9.12lem2 9703 hsmexlem4 10342 hsmexlem5 10343 zorn2lem7 10415 uniimadom 10457 zexALT 12509 psdmul 22069 fbasrn 23787 oldf 27785 madefi 27845 negsproplem2 27958 precsexlem10 28141 seqsex 28202 noseqex 28206 zsex 28291 dimval 33572 dimvalfi 33573 onvf1odlem4 35078 onvf1od 35079 fnwe2lem2 43024 relpfr 44928 orbitex 44929 permaxpow 44983 permaxun 44985 permac8prim 44988 setrec2fun 49678 |
| Copyright terms: Public domain | W3C validator |