MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaex Structured version   Visualization version   GIF version

Theorem funimaex 6647
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5290. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
Hypothesis
Ref Expression
zfrep5.1 𝐵 ∈ V
Assertion
Ref Expression
funimaex (Fun 𝐴 → (𝐴𝐵) ∈ V)

Proof of Theorem funimaex
StepHypRef Expression
1 zfrep5.1 . 2 𝐵 ∈ V
2 funimaexg 6645 . 2 ((Fun 𝐴𝐵 ∈ V) → (𝐴𝐵) ∈ V)
31, 2mpan2 689 1 (Fun 𝐴 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Vcvv 3462  cima 5685  Fun wfun 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6556
This theorem is referenced by:  isarep2  6650  isofr  7354  isose  7355  f1opw  7682  f1oweALT  7986  ttrclse  9770  tz9.12lem2  9831  hsmexlem4  10472  hsmexlem5  10473  zorn2lem7  10545  uniimadom  10587  zexALT  12630  psdmul  22160  fbasrn  23879  oldf  27881  negsproplem2  28038  precsexlem10  28215  seqsex  28259  noseqex  28263  zsex  28330  dimval  33495  dimvalfi  33496  fnwe2lem2  42712  setrec2fun  48438
  Copyright terms: Public domain W3C validator