| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version | ||
| Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5237. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
| Ref | Expression |
|---|---|
| zfrep5.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | funimaexg 6606 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 “ cima 5644 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 |
| This theorem is referenced by: isarep2 6611 isofr 7320 isose 7321 f1opw 7648 f1oweALT 7954 ttrclse 9687 tz9.12lem2 9748 hsmexlem4 10389 hsmexlem5 10390 zorn2lem7 10462 uniimadom 10504 zexALT 12556 psdmul 22060 fbasrn 23778 oldf 27772 madefi 27831 negsproplem2 27942 precsexlem10 28125 seqsex 28186 noseqex 28190 zsex 28275 dimval 33603 dimvalfi 33604 onvf1odlem4 35100 onvf1od 35101 fnwe2lem2 43047 relpfr 44951 orbitex 44952 permaxpow 45006 permaxun 45008 permac8prim 45011 setrec2fun 49685 |
| Copyright terms: Public domain | W3C validator |