MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaex Structured version   Visualization version   GIF version

Theorem funimaex 6655
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5279. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
Hypothesis
Ref Expression
zfrep5.1 𝐵 ∈ V
Assertion
Ref Expression
funimaex (Fun 𝐴 → (𝐴𝐵) ∈ V)

Proof of Theorem funimaex
StepHypRef Expression
1 zfrep5.1 . 2 𝐵 ∈ V
2 funimaexg 6653 . 2 ((Fun 𝐴𝐵 ∈ V) → (𝐴𝐵) ∈ V)
31, 2mpan2 691 1 (Fun 𝐴 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480  cima 5688  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563
This theorem is referenced by:  isarep2  6658  isofr  7362  isose  7363  f1opw  7689  f1oweALT  7997  ttrclse  9767  tz9.12lem2  9828  hsmexlem4  10469  hsmexlem5  10470  zorn2lem7  10542  uniimadom  10584  zexALT  12633  psdmul  22170  fbasrn  23892  oldf  27896  madefi  27950  negsproplem2  28061  precsexlem10  28240  seqsex  28291  noseqex  28295  zsex  28366  dimval  33651  dimvalfi  33652  fnwe2lem2  43063  relpfr  44975  setrec2fun  49211
  Copyright terms: Public domain W3C validator