![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version |
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5303. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
Ref | Expression |
---|---|
zfrep5.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | funimaexg 6664 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 “ cima 5703 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 |
This theorem is referenced by: isarep2 6669 isofr 7378 isose 7379 f1opw 7706 f1oweALT 8013 ttrclse 9796 tz9.12lem2 9857 hsmexlem4 10498 hsmexlem5 10499 zorn2lem7 10571 uniimadom 10613 zexALT 12659 psdmul 22193 fbasrn 23913 oldf 27914 madefi 27968 negsproplem2 28079 precsexlem10 28258 seqsex 28309 noseqex 28313 zsex 28384 dimval 33613 dimvalfi 33614 fnwe2lem2 43008 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |