| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version | ||
| Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5249. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
| Ref | Expression |
|---|---|
| zfrep5.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | funimaexg 6623 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 “ cima 5657 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 |
| This theorem is referenced by: isarep2 6628 isofr 7335 isose 7336 f1opw 7663 f1oweALT 7971 ttrclse 9741 tz9.12lem2 9802 hsmexlem4 10443 hsmexlem5 10444 zorn2lem7 10516 uniimadom 10558 zexALT 12608 psdmul 22104 fbasrn 23822 oldf 27817 madefi 27876 negsproplem2 27987 precsexlem10 28170 seqsex 28231 noseqex 28235 zsex 28320 dimval 33640 dimvalfi 33641 fnwe2lem2 43075 relpfr 44979 orbitex 44980 permaxpow 45034 permaxun 45036 setrec2fun 49556 |
| Copyright terms: Public domain | W3C validator |