Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version |
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5209. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
Ref | Expression |
---|---|
zfrep5.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | funimaexg 6520 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 “ cima 5592 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 |
This theorem is referenced by: isarep2 6523 isofr 7213 isose 7214 f1opw 7525 f1oweALT 7815 ttrclse 9485 tz9.12lem2 9546 hsmexlem4 10185 hsmexlem5 10186 zorn2lem7 10258 uniimadom 10300 zexALT 12339 fbasrn 23035 dimval 31686 dimvalfi 31687 oldf 34041 fnwe2lem2 40876 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |