![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimaex | Structured version Visualization version GIF version |
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5284. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.) |
Ref | Expression |
---|---|
zfrep5.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
funimaex | ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrep5.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | funimaexg 6653 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 “ cima 5691 Fun wfun 6556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-mo 2537 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 |
This theorem is referenced by: isarep2 6658 isofr 7361 isose 7362 f1opw 7688 f1oweALT 7995 ttrclse 9764 tz9.12lem2 9825 hsmexlem4 10466 hsmexlem5 10467 zorn2lem7 10539 uniimadom 10581 zexALT 12630 psdmul 22187 fbasrn 23907 oldf 27910 madefi 27964 negsproplem2 28075 precsexlem10 28254 seqsex 28305 noseqex 28309 zsex 28380 dimval 33627 dimvalfi 33628 fnwe2lem2 43039 setrec2fun 48922 |
Copyright terms: Public domain | W3C validator |