MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaex Structured version   Visualization version   GIF version

Theorem funimaex 6655
Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep 5284. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
Hypothesis
Ref Expression
zfrep5.1 𝐵 ∈ V
Assertion
Ref Expression
funimaex (Fun 𝐴 → (𝐴𝐵) ∈ V)

Proof of Theorem funimaex
StepHypRef Expression
1 zfrep5.1 . 2 𝐵 ∈ V
2 funimaexg 6653 . 2 ((Fun 𝐴𝐵 ∈ V) → (𝐴𝐵) ∈ V)
31, 2mpan2 691 1 (Fun 𝐴 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Vcvv 3477  cima 5691  Fun wfun 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-mo 2537  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-fun 6564
This theorem is referenced by:  isarep2  6658  isofr  7361  isose  7362  f1opw  7688  f1oweALT  7995  ttrclse  9764  tz9.12lem2  9825  hsmexlem4  10466  hsmexlem5  10467  zorn2lem7  10539  uniimadom  10581  zexALT  12630  psdmul  22187  fbasrn  23907  oldf  27910  madefi  27964  negsproplem2  28075  precsexlem10  28254  seqsex  28305  noseqex  28309  zsex  28380  dimval  33627  dimvalfi  33628  fnwe2lem2  43039  setrec2fun  48922
  Copyright terms: Public domain W3C validator