MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Structured version   Visualization version   GIF version

Theorem zfrep6 7995
Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 5317 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 5303. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6 (∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem zfrep6
StepHypRef Expression
1 19.42v 1953 . . . . . . 7 (∃𝑦(𝑥𝑧𝜑) ↔ (𝑥𝑧 ∧ ∃𝑦𝜑))
21abbii 2812 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥𝑧𝜑)} = {𝑥 ∣ (𝑥𝑧 ∧ ∃𝑦𝜑)}
3 dmopab 5940 . . . . . 6 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝑧𝜑)}
4 df-rab 3444 . . . . . 6 {𝑥𝑧 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥𝑧 ∧ ∃𝑦𝜑)}
52, 3, 43eqtr4i 2778 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} = {𝑥𝑧 ∣ ∃𝑦𝜑}
6 euex 2580 . . . . . . 7 (∃!𝑦𝜑 → ∃𝑦𝜑)
76ralimi 3089 . . . . . 6 (∀𝑥𝑧 ∃!𝑦𝜑 → ∀𝑥𝑧𝑦𝜑)
8 rabid2 3478 . . . . . 6 (𝑧 = {𝑥𝑧 ∣ ∃𝑦𝜑} ↔ ∀𝑥𝑧𝑦𝜑)
97, 8sylibr 234 . . . . 5 (∀𝑥𝑧 ∃!𝑦𝜑𝑧 = {𝑥𝑧 ∣ ∃𝑦𝜑})
105, 9eqtr4id 2799 . . . 4 (∀𝑥𝑧 ∃!𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} = 𝑧)
11 vex 3492 . . . 4 𝑧 ∈ V
1210, 11eqeltrdi 2852 . . 3 (∀𝑥𝑧 ∃!𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V)
13 eumo 2581 . . . . . . 7 (∃!𝑦𝜑 → ∃*𝑦𝜑)
1413imim2i 16 . . . . . 6 ((𝑥𝑧 → ∃!𝑦𝜑) → (𝑥𝑧 → ∃*𝑦𝜑))
15 moanimv 2622 . . . . . 6 (∃*𝑦(𝑥𝑧𝜑) ↔ (𝑥𝑧 → ∃*𝑦𝜑))
1614, 15sylibr 234 . . . . 5 ((𝑥𝑧 → ∃!𝑦𝜑) → ∃*𝑦(𝑥𝑧𝜑))
1716alimi 1809 . . . 4 (∀𝑥(𝑥𝑧 → ∃!𝑦𝜑) → ∀𝑥∃*𝑦(𝑥𝑧𝜑))
18 df-ral 3068 . . . 4 (∀𝑥𝑧 ∃!𝑦𝜑 ↔ ∀𝑥(𝑥𝑧 → ∃!𝑦𝜑))
19 funopab 6613 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝑧𝜑))
2017, 18, 193imtr4i 292 . . 3 (∀𝑥𝑧 ∃!𝑦𝜑 → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)})
21 funrnex 7994 . . 3 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V → (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V))
2212, 20, 21sylc 65 . 2 (∀𝑥𝑧 ∃!𝑦𝜑 → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V)
23 nfra1 3290 . . 3 𝑥𝑥𝑧 ∃!𝑦𝜑
2410eleq2d 2830 . . . 4 (∀𝑥𝑧 ∃!𝑦𝜑 → (𝑥 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ 𝑥𝑧))
25 opabidw 5543 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ (𝑥𝑧𝜑))
26 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
27 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
2826, 27opelrn 5968 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → 𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)})
2925, 28sylbir 235 . . . . . . . 8 ((𝑥𝑧𝜑) → 𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)})
3029ex 412 . . . . . . 7 (𝑥𝑧 → (𝜑𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}))
3130impac 552 . . . . . 6 ((𝑥𝑧𝜑) → (𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∧ 𝜑))
3231eximi 1833 . . . . 5 (∃𝑦(𝑥𝑧𝜑) → ∃𝑦(𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∧ 𝜑))
333eqabri 2888 . . . . 5 (𝑥 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ ∃𝑦(𝑥𝑧𝜑))
34 df-rex 3077 . . . . 5 (∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑 ↔ ∃𝑦(𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∧ 𝜑))
3532, 33, 343imtr4i 292 . . . 4 (𝑥 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → ∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑)
3624, 35biimtrrdi 254 . . 3 (∀𝑥𝑧 ∃!𝑦𝜑 → (𝑥𝑧 → ∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑))
3723, 36ralrimi 3263 . 2 (∀𝑥𝑧 ∃!𝑦𝜑 → ∀𝑥𝑧𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑)
38 nfopab1 5236 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
3938nfrn 5977 . . . 4 𝑥ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
4039nfeq2 2926 . . 3 𝑥 𝑤 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
41 nfcv 2908 . . . 4 𝑦𝑤
42 nfopab2 5237 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
4342nfrn 5977 . . . 4 𝑦ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
4441, 43rexeqf 3362 . . 3 (𝑤 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → (∃𝑦𝑤 𝜑 ↔ ∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑))
4540, 44ralbid 3279 . 2 (𝑤 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → (∀𝑥𝑧𝑦𝑤 𝜑 ↔ ∀𝑥𝑧𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑))
4622, 37, 45spcedv 3611 1 (∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  ∃!weu 2571  {cab 2717  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cop 4654  {copab 5228  dom cdm 5700  ran crn 5701  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  bnj865  34899
  Copyright terms: Public domain W3C validator