MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Structured version   Visualization version   GIF version

Theorem zfrep6 7941
Description: A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 5300 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 5286. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6 (∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem zfrep6
StepHypRef Expression
1 19.42v 1958 . . . . . . 7 (∃𝑦(𝑥𝑧𝜑) ↔ (𝑥𝑧 ∧ ∃𝑦𝜑))
21abbii 2803 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥𝑧𝜑)} = {𝑥 ∣ (𝑥𝑧 ∧ ∃𝑦𝜑)}
3 dmopab 5916 . . . . . 6 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝑧𝜑)}
4 df-rab 3434 . . . . . 6 {𝑥𝑧 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥𝑧 ∧ ∃𝑦𝜑)}
52, 3, 43eqtr4i 2771 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} = {𝑥𝑧 ∣ ∃𝑦𝜑}
6 euex 2572 . . . . . . 7 (∃!𝑦𝜑 → ∃𝑦𝜑)
76ralimi 3084 . . . . . 6 (∀𝑥𝑧 ∃!𝑦𝜑 → ∀𝑥𝑧𝑦𝜑)
8 rabid2 3465 . . . . . 6 (𝑧 = {𝑥𝑧 ∣ ∃𝑦𝜑} ↔ ∀𝑥𝑧𝑦𝜑)
97, 8sylibr 233 . . . . 5 (∀𝑥𝑧 ∃!𝑦𝜑𝑧 = {𝑥𝑧 ∣ ∃𝑦𝜑})
105, 9eqtr4id 2792 . . . 4 (∀𝑥𝑧 ∃!𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} = 𝑧)
11 vex 3479 . . . 4 𝑧 ∈ V
1210, 11eqeltrdi 2842 . . 3 (∀𝑥𝑧 ∃!𝑦𝜑 → dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V)
13 eumo 2573 . . . . . . 7 (∃!𝑦𝜑 → ∃*𝑦𝜑)
1413imim2i 16 . . . . . 6 ((𝑥𝑧 → ∃!𝑦𝜑) → (𝑥𝑧 → ∃*𝑦𝜑))
15 moanimv 2616 . . . . . 6 (∃*𝑦(𝑥𝑧𝜑) ↔ (𝑥𝑧 → ∃*𝑦𝜑))
1614, 15sylibr 233 . . . . 5 ((𝑥𝑧 → ∃!𝑦𝜑) → ∃*𝑦(𝑥𝑧𝜑))
1716alimi 1814 . . . 4 (∀𝑥(𝑥𝑧 → ∃!𝑦𝜑) → ∀𝑥∃*𝑦(𝑥𝑧𝜑))
18 df-ral 3063 . . . 4 (∀𝑥𝑧 ∃!𝑦𝜑 ↔ ∀𝑥(𝑥𝑧 → ∃!𝑦𝜑))
19 funopab 6584 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝑧𝜑))
2017, 18, 193imtr4i 292 . . 3 (∀𝑥𝑧 ∃!𝑦𝜑 → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)})
21 funrnex 7940 . . 3 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V → (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V))
2212, 20, 21sylc 65 . 2 (∀𝑥𝑧 ∃!𝑦𝜑 → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∈ V)
23 nfra1 3282 . . 3 𝑥𝑥𝑧 ∃!𝑦𝜑
2410eleq2d 2820 . . . 4 (∀𝑥𝑧 ∃!𝑦𝜑 → (𝑥 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ 𝑥𝑧))
25 opabidw 5525 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ (𝑥𝑧𝜑))
26 vex 3479 . . . . . . . . . 10 𝑥 ∈ V
27 vex 3479 . . . . . . . . . 10 𝑦 ∈ V
2826, 27opelrn 5943 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → 𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)})
2925, 28sylbir 234 . . . . . . . 8 ((𝑥𝑧𝜑) → 𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)})
3029ex 414 . . . . . . 7 (𝑥𝑧 → (𝜑𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}))
3130impac 554 . . . . . 6 ((𝑥𝑧𝜑) → (𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∧ 𝜑))
3231eximi 1838 . . . . 5 (∃𝑦(𝑥𝑧𝜑) → ∃𝑦(𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∧ 𝜑))
333eqabri 2878 . . . . 5 (𝑥 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ↔ ∃𝑦(𝑥𝑧𝜑))
34 df-rex 3072 . . . . 5 (∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑 ↔ ∃𝑦(𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} ∧ 𝜑))
3532, 33, 343imtr4i 292 . . . 4 (𝑥 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → ∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑)
3624, 35syl6bir 254 . . 3 (∀𝑥𝑧 ∃!𝑦𝜑 → (𝑥𝑧 → ∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑))
3723, 36ralrimi 3255 . 2 (∀𝑥𝑧 ∃!𝑦𝜑 → ∀𝑥𝑧𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑)
38 nfopab1 5219 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
3938nfrn 5952 . . . 4 𝑥ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
4039nfeq2 2921 . . 3 𝑥 𝑤 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
41 nfcv 2904 . . . 4 𝑦𝑤
42 nfopab2 5220 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
4342nfrn 5952 . . . 4 𝑦ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}
4441, 43rexeqf 3351 . . 3 (𝑤 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → (∃𝑦𝑤 𝜑 ↔ ∃𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑))
4540, 44ralbid 3271 . 2 (𝑤 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)} → (∀𝑥𝑧𝑦𝑤 𝜑 ↔ ∀𝑥𝑧𝑦 ∈ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑧𝜑)}𝜑))
4622, 37, 45spcedv 3589 1 (∀𝑥𝑧 ∃!𝑦𝜑 → ∃𝑤𝑥𝑧𝑦𝑤 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  ∃*wmo 2533  ∃!weu 2563  {cab 2710  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  cop 4635  {copab 5211  dom cdm 5677  ran crn 5678  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by:  bnj865  33934
  Copyright terms: Public domain W3C validator