Proof of Theorem zfrep6
Step | Hyp | Ref
| Expression |
1 | | euex 2622 |
. . . . . . 7
⊢
(∃!𝑦𝜑 → ∃𝑦𝜑) |
2 | 1 | ralimi 3127 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑧 ∃𝑦𝜑) |
3 | | rabid2 3340 |
. . . . . 6
⊢ (𝑧 = {𝑥 ∈ 𝑧 ∣ ∃𝑦𝜑} ↔ ∀𝑥 ∈ 𝑧 ∃𝑦𝜑) |
4 | 2, 3 | sylibr 235 |
. . . . 5
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → 𝑧 = {𝑥 ∈ 𝑧 ∣ ∃𝑦𝜑}) |
5 | | 19.42v 1931 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝑧 ∧ ∃𝑦𝜑)) |
6 | 5 | abbii 2861 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝑧 ∧ ∃𝑦𝜑)} |
7 | | dmopab 5670 |
. . . . . 6
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)} |
8 | | df-rab 3114 |
. . . . . 6
⊢ {𝑥 ∈ 𝑧 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑧 ∧ ∃𝑦𝜑)} |
9 | 6, 7, 8 | 3eqtr4i 2829 |
. . . . 5
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} = {𝑥 ∈ 𝑧 ∣ ∃𝑦𝜑} |
10 | 4, 9 | syl6reqr 2850 |
. . . 4
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} = 𝑧) |
11 | | vex 3440 |
. . . 4
⊢ 𝑧 ∈ V |
12 | 10, 11 | syl6eqel 2891 |
. . 3
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∈ V) |
13 | | eumo 2623 |
. . . . . . 7
⊢
(∃!𝑦𝜑 → ∃*𝑦𝜑) |
14 | 13 | imim2i 16 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑧 → ∃!𝑦𝜑) → (𝑥 ∈ 𝑧 → ∃*𝑦𝜑)) |
15 | | moanimv 2672 |
. . . . . 6
⊢
(∃*𝑦(𝑥 ∈ 𝑧 ∧ 𝜑) ↔ (𝑥 ∈ 𝑧 → ∃*𝑦𝜑)) |
16 | 14, 15 | sylibr 235 |
. . . . 5
⊢ ((𝑥 ∈ 𝑧 → ∃!𝑦𝜑) → ∃*𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)) |
17 | 16 | alimi 1793 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝑧 → ∃!𝑦𝜑) → ∀𝑥∃*𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)) |
18 | | df-ral 3110 |
. . . 4
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑧 → ∃!𝑦𝜑)) |
19 | | funopab 6260 |
. . . 4
⊢ (Fun
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)) |
20 | 17, 18, 19 | 3imtr4i 293 |
. . 3
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}) |
21 | | funrnex 7511 |
. . 3
⊢ (dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∈ V → (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} → ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∈ V)) |
22 | 12, 20, 21 | sylc 65 |
. 2
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∈ V) |
23 | | nfra1 3186 |
. . 3
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 |
24 | 10 | eleq2d 2868 |
. . . 4
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → (𝑥 ∈ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ↔ 𝑥 ∈ 𝑧)) |
25 | | opabid 5303 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
26 | | vex 3440 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
27 | | vex 3440 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
28 | 26, 27 | opelrn 5695 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} → 𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}) |
29 | 25, 28 | sylbir 236 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑧 ∧ 𝜑) → 𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}) |
30 | 29 | ex 413 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑧 → (𝜑 → 𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)})) |
31 | 30 | impac 553 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑧 ∧ 𝜑) → (𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∧ 𝜑)) |
32 | 31 | eximi 1816 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝑧 ∧ 𝜑) → ∃𝑦(𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∧ 𝜑)) |
33 | 7 | abeq2i 2917 |
. . . . 5
⊢ (𝑥 ∈ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ↔ ∃𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)) |
34 | | df-rex 3111 |
. . . . 5
⊢
(∃𝑦 ∈ ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}𝜑 ↔ ∃𝑦(𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} ∧ 𝜑)) |
35 | 32, 33, 34 | 3imtr4i 293 |
. . . 4
⊢ (𝑥 ∈ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} → ∃𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}𝜑) |
36 | 24, 35 | syl6bir 255 |
. . 3
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → (𝑥 ∈ 𝑧 → ∃𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}𝜑)) |
37 | 23, 36 | ralrimi 3183 |
. 2
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}𝜑) |
38 | | nfopab1 5031 |
. . . . 5
⊢
Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} |
39 | 38 | nfrn 5706 |
. . . 4
⊢
Ⅎ𝑥ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} |
40 | 39 | nfeq2 2964 |
. . 3
⊢
Ⅎ𝑥 𝑤 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} |
41 | | nfcv 2949 |
. . . 4
⊢
Ⅎ𝑦𝑤 |
42 | | nfopab2 5032 |
. . . . 5
⊢
Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} |
43 | 42 | nfrn 5706 |
. . . 4
⊢
Ⅎ𝑦ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} |
44 | 41, 43 | rexeqf 3358 |
. . 3
⊢ (𝑤 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} → (∃𝑦 ∈ 𝑤 𝜑 ↔ ∃𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}𝜑)) |
45 | 40, 44 | ralbid 3195 |
. 2
⊢ (𝑤 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)} → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑 ↔ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑧 ∧ 𝜑)}𝜑)) |
46 | 22, 37, 45 | elabd 3606 |
1
⊢
(∀𝑥 ∈
𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) |