| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cp | Structured version Visualization version GIF version | ||
| Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9838 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cp | ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . 3 ⊢ 𝑧 ∈ V | |
| 2 | 1 | cplem2 9843 | . 2 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) |
| 3 | abn0 4348 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦𝜑) | |
| 4 | elin 3930 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤)) | |
| 5 | abid 2711 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 5 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤) ↔ (𝜑 ∧ 𝑦 ∈ 𝑤)) |
| 7 | ancom 460 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) | |
| 8 | 4, 6, 7 | 3bitri 297 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) |
| 9 | 8 | exbii 1848 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) |
| 10 | nfab1 2893 | . . . . . . . 8 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 11 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑤 | |
| 12 | 10, 11 | nfin 4187 | . . . . . . 7 ⊢ Ⅎ𝑦({𝑦 ∣ 𝜑} ∩ 𝑤) |
| 13 | 12 | n0f 4312 | . . . . . 6 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤)) |
| 14 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑤 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) | |
| 15 | 9, 13, 14 | 3bitr4i 303 | . . . . 5 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 ∈ 𝑤 𝜑) |
| 16 | 3, 15 | imbi12i 350 | . . . 4 ⊢ (({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
| 17 | 16 | ralbii 3075 | . . 3 ⊢ (∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
| 18 | 17 | exbii 1848 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
| 19 | 2, 18 | mpbi 230 | 1 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: bnd 9845 |
| Copyright terms: Public domain | W3C validator |