MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cp Structured version   Visualization version   GIF version

Theorem cp 9580
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9574 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.)
Assertion
Ref Expression
cp 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑧,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cp
StepHypRef Expression
1 vex 3426 . . 3 𝑧 ∈ V
21cplem2 9579 . 2 𝑤𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅)
3 abn0 4311 . . . . 5 ({𝑦𝜑} ≠ ∅ ↔ ∃𝑦𝜑)
4 elin 3899 . . . . . . . 8 (𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦𝜑} ∧ 𝑦𝑤))
5 abid 2719 . . . . . . . . 9 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
65anbi1i 623 . . . . . . . 8 ((𝑦 ∈ {𝑦𝜑} ∧ 𝑦𝑤) ↔ (𝜑𝑦𝑤))
7 ancom 460 . . . . . . . 8 ((𝜑𝑦𝑤) ↔ (𝑦𝑤𝜑))
84, 6, 73bitri 296 . . . . . . 7 (𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ (𝑦𝑤𝜑))
98exbii 1851 . . . . . 6 (∃𝑦 𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦𝑤𝜑))
10 nfab1 2908 . . . . . . . 8 𝑦{𝑦𝜑}
11 nfcv 2906 . . . . . . . 8 𝑦𝑤
1210, 11nfin 4147 . . . . . . 7 𝑦({𝑦𝜑} ∩ 𝑤)
1312n0f 4273 . . . . . 6 (({𝑦𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦𝜑} ∩ 𝑤))
14 df-rex 3069 . . . . . 6 (∃𝑦𝑤 𝜑 ↔ ∃𝑦(𝑦𝑤𝜑))
159, 13, 143bitr4i 302 . . . . 5 (({𝑦𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦𝑤 𝜑)
163, 15imbi12i 350 . . . 4 (({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
1716ralbii 3090 . . 3 (∀𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
1817exbii 1851 . 2 (∃𝑤𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
192, 18mpbi 229 1 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  cin 3882  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  bnd  9581
  Copyright terms: Public domain W3C validator