![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cp | Structured version Visualization version GIF version |
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9047 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cp | ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3401 | . . 3 ⊢ 𝑧 ∈ V | |
2 | 1 | cplem2 9052 | . 2 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) |
3 | abn0 4185 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦𝜑) | |
4 | elin 4019 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤)) | |
5 | abid 2765 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
6 | 5 | anbi1i 617 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤) ↔ (𝜑 ∧ 𝑦 ∈ 𝑤)) |
7 | ancom 454 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) | |
8 | 4, 6, 7 | 3bitri 289 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) |
9 | 8 | exbii 1892 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) |
10 | nfab1 2936 | . . . . . . . 8 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
11 | nfcv 2934 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑤 | |
12 | 10, 11 | nfin 4041 | . . . . . . 7 ⊢ Ⅎ𝑦({𝑦 ∣ 𝜑} ∩ 𝑤) |
13 | 12 | n0f 4156 | . . . . . 6 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤)) |
14 | df-rex 3096 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑤 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) | |
15 | 9, 13, 14 | 3bitr4i 295 | . . . . 5 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 ∈ 𝑤 𝜑) |
16 | 3, 15 | imbi12i 342 | . . . 4 ⊢ (({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
17 | 16 | ralbii 3162 | . . 3 ⊢ (∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
18 | 17 | exbii 1892 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
19 | 2, 18 | mpbi 222 | 1 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∃wex 1823 ∈ wcel 2107 {cab 2763 ≠ wne 2969 ∀wral 3090 ∃wrex 3091 ∩ cin 3791 ∅c0 4141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-reg 8788 ax-inf2 8837 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-r1 8926 df-rank 8927 |
This theorem is referenced by: bnd 9054 |
Copyright terms: Public domain | W3C validator |