![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cp | Structured version Visualization version GIF version |
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9884 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cp | ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . . 3 ⊢ 𝑧 ∈ V | |
2 | 1 | cplem2 9889 | . 2 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) |
3 | abn0 4380 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦𝜑) | |
4 | elin 3964 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤)) | |
5 | abid 2712 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
6 | 5 | anbi1i 623 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤) ↔ (𝜑 ∧ 𝑦 ∈ 𝑤)) |
7 | ancom 460 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) | |
8 | 4, 6, 7 | 3bitri 297 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) |
9 | 8 | exbii 1849 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) |
10 | nfab1 2904 | . . . . . . . 8 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
11 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑤 | |
12 | 10, 11 | nfin 4216 | . . . . . . 7 ⊢ Ⅎ𝑦({𝑦 ∣ 𝜑} ∩ 𝑤) |
13 | 12 | n0f 4342 | . . . . . 6 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤)) |
14 | df-rex 3070 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑤 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) | |
15 | 9, 13, 14 | 3bitr4i 303 | . . . . 5 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 ∈ 𝑤 𝜑) |
16 | 3, 15 | imbi12i 350 | . . . 4 ⊢ (({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
17 | 16 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
18 | 17 | exbii 1849 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
19 | 2, 18 | mpbi 229 | 1 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 {cab 2708 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∩ cin 3947 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9591 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-r1 9763 df-rank 9764 |
This theorem is referenced by: bnd 9891 |
Copyright terms: Public domain | W3C validator |