![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cp | Structured version Visualization version GIF version |
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9822 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cp | ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3450 | . . 3 ⊢ 𝑧 ∈ V | |
2 | 1 | cplem2 9827 | . 2 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) |
3 | abn0 4341 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦𝜑) | |
4 | elin 3927 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤)) | |
5 | abid 2718 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
6 | 5 | anbi1i 625 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤) ↔ (𝜑 ∧ 𝑦 ∈ 𝑤)) |
7 | ancom 462 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) | |
8 | 4, 6, 7 | 3bitri 297 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) |
9 | 8 | exbii 1851 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) |
10 | nfab1 2910 | . . . . . . . 8 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
11 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑤 | |
12 | 10, 11 | nfin 4177 | . . . . . . 7 ⊢ Ⅎ𝑦({𝑦 ∣ 𝜑} ∩ 𝑤) |
13 | 12 | n0f 4303 | . . . . . 6 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤)) |
14 | df-rex 3075 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑤 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) | |
15 | 9, 13, 14 | 3bitr4i 303 | . . . . 5 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 ∈ 𝑤 𝜑) |
16 | 3, 15 | imbi12i 351 | . . . 4 ⊢ (({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
17 | 16 | ralbii 3097 | . . 3 ⊢ (∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
18 | 17 | exbii 1851 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
19 | 2, 18 | mpbi 229 | 1 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 {cab 2714 ≠ wne 2944 ∀wral 3065 ∃wrex 3074 ∩ cin 3910 ∅c0 4283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9529 ax-inf2 9578 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-r1 9701 df-rank 9702 |
This theorem is referenced by: bnd 9829 |
Copyright terms: Public domain | W3C validator |