| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cp | Structured version Visualization version GIF version | ||
| Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9778 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cp | ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . 3 ⊢ 𝑧 ∈ V | |
| 2 | 1 | cplem2 9783 | . 2 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) |
| 3 | abn0 4332 | . . . . 5 ⊢ ({𝑦 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦𝜑) | |
| 4 | elin 3913 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤)) | |
| 5 | abid 2713 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 5 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑦 ∈ {𝑦 ∣ 𝜑} ∧ 𝑦 ∈ 𝑤) ↔ (𝜑 ∧ 𝑦 ∈ 𝑤)) |
| 7 | ancom 460 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) | |
| 8 | 4, 6, 7 | 3bitri 297 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ (𝑦 ∈ 𝑤 ∧ 𝜑)) |
| 9 | 8 | exbii 1849 | . . . . . 6 ⊢ (∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) |
| 10 | nfab1 2896 | . . . . . . . 8 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 11 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑤 | |
| 12 | 10, 11 | nfin 4171 | . . . . . . 7 ⊢ Ⅎ𝑦({𝑦 ∣ 𝜑} ∩ 𝑤) |
| 13 | 12 | n0f 4296 | . . . . . 6 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦 ∣ 𝜑} ∩ 𝑤)) |
| 14 | df-rex 3057 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑤 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝜑)) | |
| 15 | 9, 13, 14 | 3bitr4i 303 | . . . . 5 ⊢ (({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 ∈ 𝑤 𝜑) |
| 16 | 3, 15 | imbi12i 350 | . . . 4 ⊢ (({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
| 17 | 16 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
| 18 | 17 | exbii 1849 | . 2 ⊢ (∃𝑤∀𝑥 ∈ 𝑧 ({𝑦 ∣ 𝜑} ≠ ∅ → ({𝑦 ∣ 𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑)) |
| 19 | 2, 18 | mpbi 230 | 1 ⊢ ∃𝑤∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → ∃𝑦 ∈ 𝑤 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: bnd 9785 |
| Copyright terms: Public domain | W3C validator |