MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cp Structured version   Visualization version   GIF version

Theorem cp 9844
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9838 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.)
Assertion
Ref Expression
cp 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑧,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cp
StepHypRef Expression
1 vex 3451 . . 3 𝑧 ∈ V
21cplem2 9843 . 2 𝑤𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅)
3 abn0 4348 . . . . 5 ({𝑦𝜑} ≠ ∅ ↔ ∃𝑦𝜑)
4 elin 3930 . . . . . . . 8 (𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦𝜑} ∧ 𝑦𝑤))
5 abid 2711 . . . . . . . . 9 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
65anbi1i 624 . . . . . . . 8 ((𝑦 ∈ {𝑦𝜑} ∧ 𝑦𝑤) ↔ (𝜑𝑦𝑤))
7 ancom 460 . . . . . . . 8 ((𝜑𝑦𝑤) ↔ (𝑦𝑤𝜑))
84, 6, 73bitri 297 . . . . . . 7 (𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ (𝑦𝑤𝜑))
98exbii 1848 . . . . . 6 (∃𝑦 𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦𝑤𝜑))
10 nfab1 2893 . . . . . . . 8 𝑦{𝑦𝜑}
11 nfcv 2891 . . . . . . . 8 𝑦𝑤
1210, 11nfin 4187 . . . . . . 7 𝑦({𝑦𝜑} ∩ 𝑤)
1312n0f 4312 . . . . . 6 (({𝑦𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦𝜑} ∩ 𝑤))
14 df-rex 3054 . . . . . 6 (∃𝑦𝑤 𝜑 ↔ ∃𝑦(𝑦𝑤𝜑))
159, 13, 143bitr4i 303 . . . . 5 (({𝑦𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦𝑤 𝜑)
163, 15imbi12i 350 . . . 4 (({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
1716ralbii 3075 . . 3 (∀𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
1817exbii 1848 . 2 (∃𝑤𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
192, 18mpbi 230 1 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  cin 3913  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718
This theorem is referenced by:  bnd  9845
  Copyright terms: Public domain W3C validator