MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cp Structured version   Visualization version   GIF version

Theorem cp 9784
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 9778 that collapses a proper class into a set of minimum rank. The wff 𝜑 can be thought of as 𝜑(𝑥, 𝑦). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.)
Assertion
Ref Expression
cp 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
Distinct variable groups:   𝜑,𝑧,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cp
StepHypRef Expression
1 vex 3440 . . 3 𝑧 ∈ V
21cplem2 9783 . 2 𝑤𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅)
3 abn0 4332 . . . . 5 ({𝑦𝜑} ≠ ∅ ↔ ∃𝑦𝜑)
4 elin 3913 . . . . . . . 8 (𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ (𝑦 ∈ {𝑦𝜑} ∧ 𝑦𝑤))
5 abid 2713 . . . . . . . . 9 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
65anbi1i 624 . . . . . . . 8 ((𝑦 ∈ {𝑦𝜑} ∧ 𝑦𝑤) ↔ (𝜑𝑦𝑤))
7 ancom 460 . . . . . . . 8 ((𝜑𝑦𝑤) ↔ (𝑦𝑤𝜑))
84, 6, 73bitri 297 . . . . . . 7 (𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ (𝑦𝑤𝜑))
98exbii 1849 . . . . . 6 (∃𝑦 𝑦 ∈ ({𝑦𝜑} ∩ 𝑤) ↔ ∃𝑦(𝑦𝑤𝜑))
10 nfab1 2896 . . . . . . . 8 𝑦{𝑦𝜑}
11 nfcv 2894 . . . . . . . 8 𝑦𝑤
1210, 11nfin 4171 . . . . . . 7 𝑦({𝑦𝜑} ∩ 𝑤)
1312n0f 4296 . . . . . 6 (({𝑦𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ({𝑦𝜑} ∩ 𝑤))
14 df-rex 3057 . . . . . 6 (∃𝑦𝑤 𝜑 ↔ ∃𝑦(𝑦𝑤𝜑))
159, 13, 143bitr4i 303 . . . . 5 (({𝑦𝜑} ∩ 𝑤) ≠ ∅ ↔ ∃𝑦𝑤 𝜑)
163, 15imbi12i 350 . . . 4 (({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
1716ralbii 3078 . . 3 (∀𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ ∀𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
1817exbii 1849 . 2 (∃𝑤𝑥𝑧 ({𝑦𝜑} ≠ ∅ → ({𝑦𝜑} ∩ 𝑤) ≠ ∅) ↔ ∃𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑))
192, 18mpbi 230 1 𝑤𝑥𝑧 (∃𝑦𝜑 → ∃𝑦𝑤 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  cin 3896  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  bnd  9785
  Copyright terms: Public domain W3C validator