Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dveeq2-o Structured version   Visualization version   GIF version

Theorem dveeq2-o 38951
Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 2377 using ax-c15 38907. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq2-o (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq2-o
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1911 . 2 (𝑧 = 𝑤 → ∀𝑥 𝑧 = 𝑤)
2 ax-5 1911 . 2 (𝑧 = 𝑦 → ∀𝑤 𝑧 = 𝑦)
3 equequ2 2027 . 2 (𝑤 = 𝑦 → (𝑧 = 𝑤𝑧 = 𝑦))
41, 2, 3dvelimf-o 38947 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2143  ax-11 2159  ax-12 2179  ax-13 2371  ax-c5 38901  ax-c4 38902  ax-c7 38903  ax-c10 38904  ax-c11 38905  ax-c9 38908
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785
This theorem is referenced by:  ax12eq  38959  ax12el  38960  ax12inda  38966  ax12v2-o  38967
  Copyright terms: Public domain W3C validator