Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dveeq2-o | Structured version Visualization version GIF version |
Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 2386 using ax-c15 36455. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dveeq2-o | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1912 | . 2 ⊢ (𝑧 = 𝑤 → ∀𝑥 𝑧 = 𝑤) | |
2 | ax-5 1912 | . 2 ⊢ (𝑧 = 𝑦 → ∀𝑤 𝑧 = 𝑦) | |
3 | equequ2 2034 | . 2 ⊢ (𝑤 = 𝑦 → (𝑧 = 𝑤 ↔ 𝑧 = 𝑦)) | |
4 | 1, 2, 3 | dvelimf-o 36495 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-11 2159 ax-12 2176 ax-13 2380 ax-c5 36449 ax-c4 36450 ax-c7 36451 ax-c10 36452 ax-c11 36453 ax-c9 36456 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 |
This theorem is referenced by: ax12eq 36507 ax12el 36508 ax12inda 36514 ax12v2-o 36515 |
Copyright terms: Public domain | W3C validator |