Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg3 Structured version   Visualization version   GIF version

Theorem dfrdg3 35838
Description: Generalization of dfrdg2 35837 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg3 rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
Distinct variable groups:   𝑓,𝐹,𝑥,𝑦   𝑓,𝐼,𝑥,𝑦

Proof of Theorem dfrdg3
StepHypRef Expression
1 dfrdg2 35837 . . 3 (𝐼 ∈ V → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2 iftrue 4478 . . . . . . . . . 10 (𝐼 ∈ V → if(𝐼 ∈ V, 𝐼, ∅) = 𝐼)
32ifeq1d 4492 . . . . . . . . 9 (𝐼 ∈ V → if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
43eqeq2d 2742 . . . . . . . 8 (𝐼 ∈ V → ((𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
54ralbidv 3155 . . . . . . 7 (𝐼 ∈ V → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
65anbi2d 630 . . . . . 6 (𝐼 ∈ V → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
76rexbidv 3156 . . . . 5 (𝐼 ∈ V → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
87abbidv 2797 . . . 4 (𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
98unieqd 4869 . . 3 (𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
101, 9eqtr4d 2769 . 2 (𝐼 ∈ V → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
11 0ex 5243 . . . 4 ∅ ∈ V
12 dfrdg2 35837 . . . 4 (∅ ∈ V → rec(𝐹, ∅) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
1311, 12ax-mp 5 . . 3 rec(𝐹, ∅) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
14 rdgprc 35836 . . 3 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
15 iffalse 4481 . . . . . . . . . 10 𝐼 ∈ V → if(𝐼 ∈ V, 𝐼, ∅) = ∅)
1615ifeq1d 4492 . . . . . . . . 9 𝐼 ∈ V → if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
1716eqeq2d 2742 . . . . . . . 8 𝐼 ∈ V → ((𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1817ralbidv 3155 . . . . . . 7 𝐼 ∈ V → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1918anbi2d 630 . . . . . 6 𝐼 ∈ V → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
2019rexbidv 3156 . . . . 5 𝐼 ∈ V → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
2120abbidv 2797 . . . 4 𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2221unieqd 4869 . . 3 𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2313, 14, 223eqtr4a 2792 . 2 𝐼 ∈ V → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2410, 23pm2.61i 182 1 rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  c0 4280  ifcif 4472   cuni 4856  cima 5617  Oncon0 6306  Lim wlim 6307   Fn wfn 6476  cfv 6481  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  dfrdg4  35993
  Copyright terms: Public domain W3C validator