Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg3 Structured version   Visualization version   GIF version

Theorem dfrdg3 33678
Description: Generalization of dfrdg2 33677 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg3 rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
Distinct variable groups:   𝑓,𝐹,𝑥,𝑦   𝑓,𝐼,𝑥,𝑦

Proof of Theorem dfrdg3
StepHypRef Expression
1 dfrdg2 33677 . . 3 (𝐼 ∈ V → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2 iftrue 4462 . . . . . . . . . 10 (𝐼 ∈ V → if(𝐼 ∈ V, 𝐼, ∅) = 𝐼)
32ifeq1d 4475 . . . . . . . . 9 (𝐼 ∈ V → if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
43eqeq2d 2749 . . . . . . . 8 (𝐼 ∈ V → ((𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
54ralbidv 3120 . . . . . . 7 (𝐼 ∈ V → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
65anbi2d 628 . . . . . 6 (𝐼 ∈ V → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
76rexbidv 3225 . . . . 5 (𝐼 ∈ V → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
87abbidv 2808 . . . 4 (𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
98unieqd 4850 . . 3 (𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
101, 9eqtr4d 2781 . 2 (𝐼 ∈ V → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
11 0ex 5226 . . . 4 ∅ ∈ V
12 dfrdg2 33677 . . . 4 (∅ ∈ V → rec(𝐹, ∅) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
1311, 12ax-mp 5 . . 3 rec(𝐹, ∅) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
14 rdgprc 33676 . . 3 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅))
15 iffalse 4465 . . . . . . . . . 10 𝐼 ∈ V → if(𝐼 ∈ V, 𝐼, ∅) = ∅)
1615ifeq1d 4475 . . . . . . . . 9 𝐼 ∈ V → if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
1716eqeq2d 2749 . . . . . . . 8 𝐼 ∈ V → ((𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1817ralbidv 3120 . . . . . . 7 𝐼 ∈ V → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1918anbi2d 628 . . . . . 6 𝐼 ∈ V → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
2019rexbidv 3225 . . . . 5 𝐼 ∈ V → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
2120abbidv 2808 . . . 4 𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2221unieqd 4850 . . 3 𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2313, 14, 223eqtr4a 2805 . 2 𝐼 ∈ V → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
2410, 23pm2.61i 182 1 rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  c0 4253  ifcif 4456   cuni 4836  cima 5583  Oncon0 6251  Lim wlim 6252   Fn wfn 6413  cfv 6418  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  dfrdg4  34180
  Copyright terms: Public domain W3C validator