Proof of Theorem dfrdg3
Step | Hyp | Ref
| Expression |
1 | | dfrdg2 33771 |
. . 3
⊢ (𝐼 ∈ V → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
2 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (𝐼 ∈ V → if(𝐼 ∈ V, 𝐼, ∅) = 𝐼) |
3 | 2 | ifeq1d 4478 |
. . . . . . . . 9
⊢ (𝐼 ∈ V → if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))) |
4 | 3 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝐼 ∈ V → ((𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))) ↔ (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))) |
5 | 4 | ralbidv 3112 |
. . . . . . 7
⊢ (𝐼 ∈ V → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))) |
6 | 5 | anbi2d 629 |
. . . . . 6
⊢ (𝐼 ∈ V → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))))) |
7 | 6 | rexbidv 3226 |
. . . . 5
⊢ (𝐼 ∈ V → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))))) |
8 | 7 | abbidv 2807 |
. . . 4
⊢ (𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
9 | 8 | unieqd 4853 |
. . 3
⊢ (𝐼 ∈ V → ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
10 | 1, 9 | eqtr4d 2781 |
. 2
⊢ (𝐼 ∈ V → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
11 | | 0ex 5231 |
. . . 4
⊢ ∅
∈ V |
12 | | dfrdg2 33771 |
. . . 4
⊢ (∅
∈ V → rec(𝐹,
∅) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
13 | 11, 12 | ax-mp 5 |
. . 3
⊢ rec(𝐹, ∅) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} |
14 | | rdgprc 33770 |
. . 3
⊢ (¬
𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) |
15 | | iffalse 4468 |
. . . . . . . . . 10
⊢ (¬
𝐼 ∈ V → if(𝐼 ∈ V, 𝐼, ∅) = ∅) |
16 | 15 | ifeq1d 4478 |
. . . . . . . . 9
⊢ (¬
𝐼 ∈ V → if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))) |
17 | 16 | eqeq2d 2749 |
. . . . . . . 8
⊢ (¬
𝐼 ∈ V → ((𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))) ↔ (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))) |
18 | 17 | ralbidv 3112 |
. . . . . . 7
⊢ (¬
𝐼 ∈ V →
(∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))) |
19 | 18 | anbi2d 629 |
. . . . . 6
⊢ (¬
𝐼 ∈ V → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))))) |
20 | 19 | rexbidv 3226 |
. . . . 5
⊢ (¬
𝐼 ∈ V →
(∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦))))))) |
21 | 20 | abbidv 2807 |
. . . 4
⊢ (¬
𝐼 ∈ V → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
22 | 21 | unieqd 4853 |
. . 3
⊢ (¬
𝐼 ∈ V → ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, ∅, if(Lim 𝑦, ∪
(𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
23 | 13, 14, 22 | 3eqtr4a 2804 |
. 2
⊢ (¬
𝐼 ∈ V → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) |
24 | 10, 23 | pm2.61i 182 |
1
⊢ rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} |