MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextwrd Structured version   Visualization version   GIF version

Theorem wwlksnextwrd 29877
Description: Lemma for wwlksnextbij 29882. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
Assertion
Ref Expression
wwlksnextwrd (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑤)   𝑉(𝑤)

Proof of Theorem wwlksnextwrd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.d . 2 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
2 3anass 1094 . . . . 5 (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
32bianass 642 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
4 wwlksnextbij0.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54wwlknbp 29822 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
6 simpl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑁 ∈ ℕ0)
7 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ Word 𝑉)
8 nn0re 12427 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
9 2re 12236 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
11 nn0ge0 12443 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
12 2pos 12265 . . . . . . . . . . . . . . . . . . . . 21 0 < 2
1312a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 < 2)
148, 10, 11, 13addgegt0d 11727 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1514adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (𝑁 + 2))
16 breq2 5106 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑤) = (𝑁 + 2) → (0 < (♯‘𝑤) ↔ 0 < (𝑁 + 2)))
1716ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (0 < (♯‘𝑤) ↔ 0 < (𝑁 + 2)))
1815, 17mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (♯‘𝑤))
19 hashgt0n0 14306 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Word 𝑉 ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
207, 18, 19syl2an2 686 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 𝑤 ≠ ∅)
21 lswcl 14509 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑉𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑉)
227, 20, 21syl2an2 686 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (lastS‘𝑤) ∈ 𝑉)
2322adantrr 717 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (lastS‘𝑤) ∈ 𝑉)
24 pfxcl 14618 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ Word 𝑉 → (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉)
25 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉))
2624, 25imbitrrid 246 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑤 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
2726eqcoms 2737 . . . . . . . . . . . . . . . . . . 19 ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑤 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑤 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
2928com12 32 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ Word 𝑉 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉))
3029adantr 480 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉))
3130imp 406 . . . . . . . . . . . . . . 15 (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑊 ∈ Word 𝑉)
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑊 ∈ Word 𝑉)
33 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
3433eqcoms 2737 . . . . . . . . . . . . . . . . 17 ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
3534adantr 480 . . . . . . . . . . . . . . . 16 (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
3635ad2antll 729 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
37 oveq1 7376 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 2) → ((♯‘𝑤) − 1) = ((𝑁 + 2) − 1))
3837adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → ((♯‘𝑤) − 1) = ((𝑁 + 2) − 1))
39 nn0cn 12428 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
40 2cnd 12240 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
41 1cnd 11145 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4239, 40, 41addsubassd 11529 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
43 2m1e1 12283 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (2 − 1) = 1)
4544oveq2d 7385 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + (2 − 1)) = (𝑁 + 1))
4642, 45eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + 1))
4738, 46sylan9eqr 2786 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((♯‘𝑤) − 1) = (𝑁 + 1))
4847oveq2d 7385 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (𝑤 prefix ((♯‘𝑤) − 1)) = (𝑤 prefix (𝑁 + 1)))
4948oveq1d 7384 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
50 pfxlswccat 14654 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Word 𝑉𝑤 ≠ ∅) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
517, 20, 50syl2an2 686 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
5249, 51eqtr3d 2766 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
5352adantrr 717 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
5436, 53eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑤 = (𝑊 ++ ⟨“(lastS‘𝑤)”⟩))
55 simprrr 781 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)
56 wwlksnextbij0.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
574, 56wwlksnextbi 29874 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (lastS‘𝑤) ∈ 𝑉) ∧ (𝑊 ∈ Word 𝑉𝑤 = (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺)))
586, 23, 32, 54, 55, 57syl23anc 1379 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺)))
5958exbiri 810 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6059com23 86 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
61603ad2ant2 1134 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
625, 61mpcom 38 . . . . . . . . 9 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))
6362expcomd 416 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6463imp 406 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))
654, 56wwlknp 29823 . . . . . . . . . . . 12 (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
6639, 41, 41addassd 11172 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
67 1p1e2 12282 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
6968oveq2d 7385 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
7066, 69eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
7170eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((♯‘𝑤) = ((𝑁 + 1) + 1) ↔ (♯‘𝑤) = (𝑁 + 2)))
7271biimpd 229 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((♯‘𝑤) = ((𝑁 + 1) + 1) → (♯‘𝑤) = (𝑁 + 2)))
7372adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → ((♯‘𝑤) = ((𝑁 + 1) + 1) → (♯‘𝑤) = (𝑁 + 2)))
7473com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = ((𝑁 + 1) + 1) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (♯‘𝑤) = (𝑁 + 2)))
7574adantl 481 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (♯‘𝑤) = (𝑁 + 2)))
76 simpl 482 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → 𝑤 ∈ Word 𝑉)
7775, 76jctild 525 . . . . . . . . . . . . 13 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
78773adant3 1132 . . . . . . . . . . . 12 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
7965, 78syl 17 . . . . . . . . . . 11 (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
8079com12 32 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
81803adant1 1130 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
825, 81syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
8382adantr 480 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
8464, 83impbid 212 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))
8584ex 412 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
8685pm5.32rd 578 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))))
873, 86bitrid 283 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))))
8887rabbidva2 3404 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
891, 88eqtrid 2776 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  c0 4292  {cpr 4587   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  2c2 12217  0cn0 12418  ..^cfzo 13591  chash 14271  Word cword 14454  lastSclsw 14503   ++ cconcat 14511  ⟨“cs1 14536   prefix cpfx 14611  Vtxcvtx 28976  Edgcedg 29027   WWalksN cwwlksn 29806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-wwlks 29810  df-wwlksn 29811
This theorem is referenced by:  wwlksnextsurj  29880  wwlksnextbij  29882
  Copyright terms: Public domain W3C validator