MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextwrd Structured version   Visualization version   GIF version

Theorem wwlksnextwrd 29418
Description: Lemma for wwlksnextbij 29423. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtxβ€˜πΊ)
wwlksnextbij0.e 𝐸 = (Edgβ€˜πΊ)
wwlksnextbij0.d 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
Assertion
Ref Expression
wwlksnextwrd (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ 𝐷 = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,π‘Š
Allowed substitution hints:   𝐷(𝑀)   𝐸(𝑀)   𝑉(𝑀)

Proof of Theorem wwlksnextwrd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.d . 2 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
2 3anass 1093 . . . . 5 (((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) ↔ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)))
32bianass 638 . . . 4 ((𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) ↔ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)))
4 wwlksnextbij0.v . . . . . . . . . . 11 𝑉 = (Vtxβ€˜πΊ)
54wwlknbp 29363 . . . . . . . . . 10 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉))
6 simpl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ 𝑁 ∈ β„•0)
7 simpl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ 𝑀 ∈ Word 𝑉)
8 nn0re 12485 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ ℝ)
9 2re 12290 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 2 ∈ ℝ)
11 nn0ge0 12501 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 0 ≀ 𝑁)
12 2pos 12319 . . . . . . . . . . . . . . . . . . . . 21 0 < 2
1312a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 0 < 2)
148, 10, 11, 13addgegt0d 11791 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„•0 β†’ 0 < (𝑁 + 2))
1514adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ 0 < (𝑁 + 2))
16 breq2 5151 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘€) = (𝑁 + 2) β†’ (0 < (β™―β€˜π‘€) ↔ 0 < (𝑁 + 2)))
1716ad2antll 725 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ (0 < (β™―β€˜π‘€) ↔ 0 < (𝑁 + 2)))
1815, 17mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ 0 < (β™―β€˜π‘€))
19 hashgt0n0 14329 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘€)) β†’ 𝑀 β‰  βˆ…)
207, 18, 19syl2an2 682 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ 𝑀 β‰  βˆ…)
21 lswcl 14522 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word 𝑉 ∧ 𝑀 β‰  βˆ…) β†’ (lastSβ€˜π‘€) ∈ 𝑉)
227, 20, 21syl2an2 682 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ (lastSβ€˜π‘€) ∈ 𝑉)
2322adantrr 713 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ (lastSβ€˜π‘€) ∈ 𝑉)
24 pfxcl 14631 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ Word 𝑉 β†’ (𝑀 prefix (𝑁 + 1)) ∈ Word 𝑉)
25 eleq1 2819 . . . . . . . . . . . . . . . . . . . . 21 (π‘Š = (𝑀 prefix (𝑁 + 1)) β†’ (π‘Š ∈ Word 𝑉 ↔ (𝑀 prefix (𝑁 + 1)) ∈ Word 𝑉))
2624, 25imbitrrid 245 . . . . . . . . . . . . . . . . . . . 20 (π‘Š = (𝑀 prefix (𝑁 + 1)) β†’ (𝑀 ∈ Word 𝑉 β†’ π‘Š ∈ Word 𝑉))
2726eqcoms 2738 . . . . . . . . . . . . . . . . . . 19 ((𝑀 prefix (𝑁 + 1)) = π‘Š β†’ (𝑀 ∈ Word 𝑉 β†’ π‘Š ∈ Word 𝑉))
2827adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ (𝑀 ∈ Word 𝑉 β†’ π‘Š ∈ Word 𝑉))
2928com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ Word 𝑉 β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ π‘Š ∈ Word 𝑉))
3029adantr 479 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ π‘Š ∈ Word 𝑉))
3130imp 405 . . . . . . . . . . . . . . 15 (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ π‘Š ∈ Word 𝑉)
3231adantl 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ π‘Š ∈ Word 𝑉)
33 oveq1 7418 . . . . . . . . . . . . . . . . . 18 (π‘Š = (𝑀 prefix (𝑁 + 1)) β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
3433eqcoms 2738 . . . . . . . . . . . . . . . . 17 ((𝑀 prefix (𝑁 + 1)) = π‘Š β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
3534adantr 479 . . . . . . . . . . . . . . . 16 (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
3635ad2antll 725 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
37 oveq1 7418 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘€) = (𝑁 + 2) β†’ ((β™―β€˜π‘€) βˆ’ 1) = ((𝑁 + 2) βˆ’ 1))
3837adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ ((β™―β€˜π‘€) βˆ’ 1) = ((𝑁 + 2) βˆ’ 1))
39 nn0cn 12486 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„‚)
40 2cnd 12294 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ 2 ∈ β„‚)
41 1cnd 11213 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ 1 ∈ β„‚)
4239, 40, 41addsubassd 11595 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ ((𝑁 + 2) βˆ’ 1) = (𝑁 + (2 βˆ’ 1)))
43 2m1e1 12342 . . . . . . . . . . . . . . . . . . . . . . 23 (2 βˆ’ 1) = 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ (2 βˆ’ 1) = 1)
4544oveq2d 7427 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ (𝑁 + (2 βˆ’ 1)) = (𝑁 + 1))
4642, 45eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ ((𝑁 + 2) βˆ’ 1) = (𝑁 + 1))
4738, 46sylan9eqr 2792 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((β™―β€˜π‘€) βˆ’ 1) = (𝑁 + 1))
4847oveq2d 7427 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) = (𝑀 prefix (𝑁 + 1)))
4948oveq1d 7426 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
50 pfxlswccat 14667 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ Word 𝑉 ∧ 𝑀 β‰  βˆ…) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
517, 20, 50syl2an2 682 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
5249, 51eqtr3d 2772 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
5352adantrr 713 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
5436, 53eqtr2d 2771 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ 𝑀 = (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
55 simprrr 778 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)
56 wwlksnextbij0.e . . . . . . . . . . . . . . 15 𝐸 = (Edgβ€˜πΊ)
574, 56wwlksnextbi 29415 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„•0 ∧ (lastSβ€˜π‘€) ∈ 𝑉) ∧ (π‘Š ∈ Word 𝑉 ∧ 𝑀 = (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ π‘Š ∈ (𝑁 WWalksN 𝐺)))
586, 23, 32, 54, 55, 57syl23anc 1375 . . . . . . . . . . . . 13 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ π‘Š ∈ (𝑁 WWalksN 𝐺)))
5958exbiri 807 . . . . . . . . . . . 12 (𝑁 ∈ β„•0 β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6059com23 86 . . . . . . . . . . 11 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
61603ad2ant2 1132 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
625, 61mpcom 38 . . . . . . . . 9 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)))
6362expcomd 415 . . . . . . . 8 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6463imp 405 . . . . . . 7 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)))
654, 56wwlknp 29364 . . . . . . . . . . . 12 (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1) ∧ βˆ€π‘– ∈ (0..^(𝑁 + 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ 𝐸))
6639, 41, 41addassd 11240 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
67 1p1e2 12341 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ (1 + 1) = 2)
6968oveq2d 7427 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ (𝑁 + (1 + 1)) = (𝑁 + 2))
7066, 69eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„•0 β†’ ((𝑁 + 1) + 1) = (𝑁 + 2))
7170eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ β„•0 β†’ ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) ↔ (β™―β€˜π‘€) = (𝑁 + 2)))
7271biimpd 228 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„•0 β†’ ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
7372adantr 479 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
7473com12 32 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
7574adantl 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1)) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
76 simpl 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1)) β†’ 𝑀 ∈ Word 𝑉)
7775, 76jctild 524 . . . . . . . . . . . . 13 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1)) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
78773adant3 1130 . . . . . . . . . . . 12 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1) ∧ βˆ€π‘– ∈ (0..^(𝑁 + 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ 𝐸) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
7965, 78syl 17 . . . . . . . . . . 11 (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
8079com12 32 . . . . . . . . . 10 ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
81803adant1 1128 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
825, 81syl 17 . . . . . . . 8 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
8382adantr 479 . . . . . . 7 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
8464, 83impbid 211 . . . . . 6 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ↔ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)))
8584ex 411 . . . . 5 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ↔ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
8685pm5.32rd 576 . . . 4 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) ↔ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))))
873, 86bitrid 282 . . 3 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ ((𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) ↔ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))))
8887rabbidva2 3432 . 2 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
891, 88eqtrid 2782 1 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ 𝐷 = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  {crab 3430  Vcvv 3472  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252   βˆ’ cmin 11448  2c2 12271  β„•0cn0 12476  ..^cfzo 13631  β™―chash 14294  Word cword 14468  lastSclsw 14516   ++ cconcat 14524  βŸ¨β€œcs1 14549   prefix cpfx 14624  Vtxcvtx 28523  Edgcedg 28574   WWalksN cwwlksn 29347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-lsw 14517  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-wwlks 29351  df-wwlksn 29352
This theorem is referenced by:  wwlksnextsurj  29421  wwlksnextbij  29423
  Copyright terms: Public domain W3C validator