MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextwrd Structured version   Visualization version   GIF version

Theorem wwlksnextwrd 29140
Description: Lemma for wwlksnextbij 29145. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtxβ€˜πΊ)
wwlksnextbij0.e 𝐸 = (Edgβ€˜πΊ)
wwlksnextbij0.d 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
Assertion
Ref Expression
wwlksnextwrd (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ 𝐷 = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑀,π‘Š
Allowed substitution hints:   𝐷(𝑀)   𝐸(𝑀)   𝑉(𝑀)

Proof of Theorem wwlksnextwrd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.d . 2 𝐷 = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)}
2 3anass 1095 . . . . 5 (((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) ↔ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)))
32bianass 640 . . . 4 ((𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) ↔ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)))
4 wwlksnextbij0.v . . . . . . . . . . 11 𝑉 = (Vtxβ€˜πΊ)
54wwlknbp 29085 . . . . . . . . . 10 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉))
6 simpl 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ 𝑁 ∈ β„•0)
7 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ 𝑀 ∈ Word 𝑉)
8 nn0re 12477 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ ℝ)
9 2re 12282 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 2 ∈ ℝ)
11 nn0ge0 12493 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 0 ≀ 𝑁)
12 2pos 12311 . . . . . . . . . . . . . . . . . . . . 21 0 < 2
1312a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ 0 < 2)
148, 10, 11, 13addgegt0d 11783 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„•0 β†’ 0 < (𝑁 + 2))
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ 0 < (𝑁 + 2))
16 breq2 5151 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜π‘€) = (𝑁 + 2) β†’ (0 < (β™―β€˜π‘€) ↔ 0 < (𝑁 + 2)))
1716ad2antll 727 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ (0 < (β™―β€˜π‘€) ↔ 0 < (𝑁 + 2)))
1815, 17mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ 0 < (β™―β€˜π‘€))
19 hashgt0n0 14321 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘€)) β†’ 𝑀 β‰  βˆ…)
207, 18, 19syl2an2 684 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ 𝑀 β‰  βˆ…)
21 lswcl 14514 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word 𝑉 ∧ 𝑀 β‰  βˆ…) β†’ (lastSβ€˜π‘€) ∈ 𝑉)
227, 20, 21syl2an2 684 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ (lastSβ€˜π‘€) ∈ 𝑉)
2322adantrr 715 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ (lastSβ€˜π‘€) ∈ 𝑉)
24 pfxcl 14623 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ Word 𝑉 β†’ (𝑀 prefix (𝑁 + 1)) ∈ Word 𝑉)
25 eleq1 2821 . . . . . . . . . . . . . . . . . . . . 21 (π‘Š = (𝑀 prefix (𝑁 + 1)) β†’ (π‘Š ∈ Word 𝑉 ↔ (𝑀 prefix (𝑁 + 1)) ∈ Word 𝑉))
2624, 25imbitrrid 245 . . . . . . . . . . . . . . . . . . . 20 (π‘Š = (𝑀 prefix (𝑁 + 1)) β†’ (𝑀 ∈ Word 𝑉 β†’ π‘Š ∈ Word 𝑉))
2726eqcoms 2740 . . . . . . . . . . . . . . . . . . 19 ((𝑀 prefix (𝑁 + 1)) = π‘Š β†’ (𝑀 ∈ Word 𝑉 β†’ π‘Š ∈ Word 𝑉))
2827adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ (𝑀 ∈ Word 𝑉 β†’ π‘Š ∈ Word 𝑉))
2928com12 32 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ Word 𝑉 β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ π‘Š ∈ Word 𝑉))
3029adantr 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ π‘Š ∈ Word 𝑉))
3130imp 407 . . . . . . . . . . . . . . 15 (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ π‘Š ∈ Word 𝑉)
3231adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ π‘Š ∈ Word 𝑉)
33 oveq1 7412 . . . . . . . . . . . . . . . . . 18 (π‘Š = (𝑀 prefix (𝑁 + 1)) β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
3433eqcoms 2740 . . . . . . . . . . . . . . . . 17 ((𝑀 prefix (𝑁 + 1)) = π‘Š β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
3534adantr 481 . . . . . . . . . . . . . . . 16 (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
3635ad2antll 727 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
37 oveq1 7412 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘€) = (𝑁 + 2) β†’ ((β™―β€˜π‘€) βˆ’ 1) = ((𝑁 + 2) βˆ’ 1))
3837adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ ((β™―β€˜π‘€) βˆ’ 1) = ((𝑁 + 2) βˆ’ 1))
39 nn0cn 12478 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„‚)
40 2cnd 12286 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ 2 ∈ β„‚)
41 1cnd 11205 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ 1 ∈ β„‚)
4239, 40, 41addsubassd 11587 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ ((𝑁 + 2) βˆ’ 1) = (𝑁 + (2 βˆ’ 1)))
43 2m1e1 12334 . . . . . . . . . . . . . . . . . . . . . . 23 (2 βˆ’ 1) = 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„•0 β†’ (2 βˆ’ 1) = 1)
4544oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ (𝑁 + (2 βˆ’ 1)) = (𝑁 + 1))
4642, 45eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ ((𝑁 + 2) βˆ’ 1) = (𝑁 + 1))
4738, 46sylan9eqr 2794 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((β™―β€˜π‘€) βˆ’ 1) = (𝑁 + 1))
4847oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ (𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) = (𝑀 prefix (𝑁 + 1)))
4948oveq1d 7420 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
50 pfxlswccat 14659 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ Word 𝑉 ∧ 𝑀 β‰  βˆ…) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
517, 20, 50syl2an2 684 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((𝑀 prefix ((β™―β€˜π‘€) βˆ’ 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
5249, 51eqtr3d 2774 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))) β†’ ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
5352adantrr 715 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ ((𝑀 prefix (𝑁 + 1)) ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) = 𝑀)
5436, 53eqtr2d 2773 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ 𝑀 = (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©))
55 simprrr 780 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)
56 wwlksnextbij0.e . . . . . . . . . . . . . . 15 𝐸 = (Edgβ€˜πΊ)
574, 56wwlksnextbi 29137 . . . . . . . . . . . . . 14 (((𝑁 ∈ β„•0 ∧ (lastSβ€˜π‘€) ∈ 𝑉) ∧ (π‘Š ∈ Word 𝑉 ∧ 𝑀 = (π‘Š ++ βŸ¨β€œ(lastSβ€˜π‘€)β€βŸ©) ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ π‘Š ∈ (𝑁 WWalksN 𝐺)))
586, 23, 32, 54, 55, 57syl23anc 1377 . . . . . . . . . . . . 13 ((𝑁 ∈ β„•0 ∧ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ π‘Š ∈ (𝑁 WWalksN 𝐺)))
5958exbiri 809 . . . . . . . . . . . 12 (𝑁 ∈ β„•0 β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6059com23 86 . . . . . . . . . . 11 (𝑁 ∈ β„•0 β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
61603ad2ant2 1134 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
625, 61mpcom 38 . . . . . . . . 9 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)))
6362expcomd 417 . . . . . . . 8 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6463imp 407 . . . . . . 7 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) β†’ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)))
654, 56wwlknp 29086 . . . . . . . . . . . 12 (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1) ∧ βˆ€π‘– ∈ (0..^(𝑁 + 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ 𝐸))
6639, 41, 41addassd 11232 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
67 1p1e2 12333 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„•0 β†’ (1 + 1) = 2)
6968oveq2d 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 β†’ (𝑁 + (1 + 1)) = (𝑁 + 2))
7066, 69eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„•0 β†’ ((𝑁 + 1) + 1) = (𝑁 + 2))
7170eqeq2d 2743 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ β„•0 β†’ ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) ↔ (β™―β€˜π‘€) = (𝑁 + 2)))
7271biimpd 228 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„•0 β†’ ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
7372adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
7473com12 32 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘€) = ((𝑁 + 1) + 1) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
7574adantl 482 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1)) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (β™―β€˜π‘€) = (𝑁 + 2)))
76 simpl 483 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1)) β†’ 𝑀 ∈ Word 𝑉)
7775, 76jctild 526 . . . . . . . . . . . . 13 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1)) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
78773adant3 1132 . . . . . . . . . . . 12 ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = ((𝑁 + 1) + 1) ∧ βˆ€π‘– ∈ (0..^(𝑁 + 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ 𝐸) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
7965, 78syl 17 . . . . . . . . . . 11 (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
8079com12 32 . . . . . . . . . 10 ((𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
81803adant1 1130 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑁 ∈ β„•0 ∧ π‘Š ∈ Word 𝑉) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
825, 81syl 17 . . . . . . . 8 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
8382adantr 481 . . . . . . 7 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ (𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2))))
8464, 83impbid 211 . . . . . 6 ((π‘Š ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ↔ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)))
8584ex 413 . . . . 5 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸) β†’ ((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ↔ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺))))
8685pm5.32rd 578 . . . 4 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ (((𝑀 ∈ Word 𝑉 ∧ (β™―β€˜π‘€) = (𝑁 + 2)) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) ↔ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))))
873, 86bitrid 282 . . 3 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ ((𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)) ↔ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸))))
8887rabbidva2 3434 . 2 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = (𝑁 + 2) ∧ (𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
891, 88eqtrid 2784 1 (π‘Š ∈ (𝑁 WWalksN 𝐺) β†’ 𝐷 = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = π‘Š ∧ {(lastSβ€˜π‘Š), (lastSβ€˜π‘€)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432  Vcvv 3474  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244   βˆ’ cmin 11440  2c2 12263  β„•0cn0 12468  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  βŸ¨β€œcs1 14541   prefix cpfx 14616  Vtxcvtx 28245  Edgcedg 28296   WWalksN cwwlksn 29069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-wwlks 29073  df-wwlksn 29074
This theorem is referenced by:  wwlksnextsurj  29143  wwlksnextbij  29145
  Copyright terms: Public domain W3C validator