Step | Hyp | Ref
| Expression |
1 | | wwlksnextbij0.d |
. 2
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} |
2 | | 3anass 1093 |
. . . . 5
⊢
(((♯‘𝑤)
= (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) |
3 | 2 | bianass 638 |
. . . 4
⊢ ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) |
4 | | wwlksnextbij0.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) |
5 | 4 | wwlknbp 28108 |
. . . . . . . . . 10
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) |
6 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑁 ∈
ℕ0) |
7 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ Word 𝑉) |
8 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
9 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ |
10 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ) |
11 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
12 | | 2pos 12006 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
2 |
13 | 12 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 0 < 2) |
14 | 8, 10, 11, 13 | addgegt0d 11478 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 0 < (𝑁 +
2)) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (𝑁 + 2)) |
16 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑤) =
(𝑁 + 2) → (0 <
(♯‘𝑤) ↔ 0
< (𝑁 +
2))) |
17 | 16 | ad2antll 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (0 < (♯‘𝑤) ↔ 0 < (𝑁 + 2))) |
18 | 15, 17 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (♯‘𝑤)) |
19 | | hashgt0n0 14008 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ Word 𝑉 ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅) |
20 | 7, 18, 19 | syl2an2 682 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 𝑤 ≠ ∅) |
21 | | lswcl 14199 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑉 ∧ 𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑉) |
22 | 7, 20, 21 | syl2an2 682 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (lastS‘𝑤) ∈ 𝑉) |
23 | 22 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (lastS‘𝑤) ∈ 𝑉) |
24 | | pfxcl 14318 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ Word 𝑉 → (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉) |
25 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉)) |
26 | 24, 25 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉)) |
27 | 26 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉)) |
29 | 28 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ Word 𝑉 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)) |
30 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)) |
31 | 30 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑊 ∈ Word 𝑉) |
32 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑊 ∈ Word 𝑉) |
33 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
34 | 33 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
36 | 35 | ad2antll 725 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
37 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑤) =
(𝑁 + 2) →
((♯‘𝑤) −
1) = ((𝑁 + 2) −
1)) |
38 | 37 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → ((♯‘𝑤) − 1) = ((𝑁 + 2) −
1)) |
39 | | nn0cn 12173 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
40 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℂ) |
41 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
42 | 39, 40, 41 | addsubassd 11282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 2) − 1)
= (𝑁 + (2 −
1))) |
43 | | 2m1e1 12029 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2
− 1) = 1 |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (2 − 1) = 1) |
45 | 44 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + (2 − 1))
= (𝑁 + 1)) |
46 | 42, 45 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 2) − 1)
= (𝑁 + 1)) |
47 | 38, 46 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((♯‘𝑤) − 1) = (𝑁 + 1)) |
48 | 47 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (𝑤 prefix ((♯‘𝑤) − 1)) = (𝑤 prefix (𝑁 + 1))) |
49 | 48 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
50 | | pfxlswccat 14354 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ Word 𝑉 ∧ 𝑤 ≠ ∅) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = 𝑤) |
51 | 7, 20, 50 | syl2an2 682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = 𝑤) |
52 | 49, 51 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉) = 𝑤) |
53 | 52 | adantrr 713 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉) = 𝑤) |
54 | 36, 53 | eqtr2d 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑤 = (𝑊 ++ 〈“(lastS‘𝑤)”〉)) |
55 | | simprrr 778 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) |
56 | | wwlksnextbij0.e |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (Edg‘𝐺) |
57 | 4, 56 | wwlksnextbi 28160 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (lastS‘𝑤)
∈ 𝑉) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑤 = (𝑊 ++ 〈“(lastS‘𝑤)”〉) ∧
{(lastS‘𝑊),
(lastS‘𝑤)} ∈
𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺))) |
58 | 6, 23, 32, 54, 55, 57 | syl23anc 1375 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺))) |
59 | 58 | exbiri 807 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (((𝑤 ∈ Word
𝑉 ∧
(♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
60 | 59 | com23 86 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
61 | 60 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
62 | 5, 61 | mpcom 38 |
. . . . . . . . 9
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
63 | 62 | expcomd 416 |
. . . . . . . 8
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
64 | 63 | imp 406 |
. . . . . . 7
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
65 | 4, 56 | wwlknp 28109 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)) |
66 | 39, 41, 41 | addassd 10928 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) =
(𝑁 + (1 +
1))) |
67 | | 1p1e2 12028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1) =
2 |
68 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (1 + 1) = 2) |
69 | 68 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + (1 + 1)) =
(𝑁 + 2)) |
70 | 66, 69 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) =
(𝑁 + 2)) |
71 | 70 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑤) =
((𝑁 + 1) + 1) ↔
(♯‘𝑤) = (𝑁 + 2))) |
72 | 71 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑤) =
((𝑁 + 1) + 1) →
(♯‘𝑤) = (𝑁 + 2))) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → ((♯‘𝑤) = ((𝑁 + 1) + 1) → (♯‘𝑤) = (𝑁 + 2))) |
74 | 73 | com12 32 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑤) =
((𝑁 + 1) + 1) →
((𝑁 ∈
ℕ0 ∧ 𝑊
∈ Word 𝑉) →
(♯‘𝑤) = (𝑁 + 2))) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑤) = (𝑁 + 2))) |
76 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → 𝑤 ∈ Word 𝑉) |
77 | 75, 76 | jctild 525 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
78 | 77 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
79 | 65, 78 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
80 | 79 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
81 | 80 | 3adant1 1128 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
82 | 5, 81 | syl 17 |
. . . . . . . 8
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
83 | 82 | adantr 480 |
. . . . . . 7
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
84 | 64, 83 | impbid 211 |
. . . . . 6
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
85 | 84 | ex 412 |
. . . . 5
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
86 | 85 | pm5.32rd 577 |
. . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))) |
87 | 3, 86 | syl5bb 282 |
. . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))) |
88 | 87 | rabbidva2 3400 |
. 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) |
89 | 1, 88 | syl5eq 2791 |
1
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) |