| Step | Hyp | Ref
| Expression |
| 1 | | wwlksnextbij0.d |
. 2
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} |
| 2 | | 3anass 1094 |
. . . . 5
⊢
(((♯‘𝑤)
= (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) |
| 3 | 2 | bianass 642 |
. . . 4
⊢ ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) |
| 4 | | wwlksnextbij0.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) |
| 5 | 4 | wwlknbp 29809 |
. . . . . . . . . 10
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) |
| 6 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑁 ∈
ℕ0) |
| 7 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ Word 𝑉) |
| 8 | | nn0re 12519 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 9 | | 2re 12323 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ |
| 10 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ) |
| 11 | | nn0ge0 12535 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
| 12 | | 2pos 12352 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
2 |
| 13 | 12 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 0 < 2) |
| 14 | 8, 10, 11, 13 | addgegt0d 11819 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 0 < (𝑁 +
2)) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (𝑁 + 2)) |
| 16 | | breq2 5129 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑤) =
(𝑁 + 2) → (0 <
(♯‘𝑤) ↔ 0
< (𝑁 +
2))) |
| 17 | 16 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (0 < (♯‘𝑤) ↔ 0 < (𝑁 + 2))) |
| 18 | 15, 17 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (♯‘𝑤)) |
| 19 | | hashgt0n0 14387 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ Word 𝑉 ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅) |
| 20 | 7, 18, 19 | syl2an2 686 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 𝑤 ≠ ∅) |
| 21 | | lswcl 14589 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑉 ∧ 𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑉) |
| 22 | 7, 20, 21 | syl2an2 686 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (lastS‘𝑤) ∈ 𝑉) |
| 23 | 22 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (lastS‘𝑤) ∈ 𝑉) |
| 24 | | pfxcl 14698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ Word 𝑉 → (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉) |
| 25 | | eleq1 2821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉)) |
| 26 | 24, 25 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉)) |
| 27 | 26 | eqcoms 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉)) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉)) |
| 29 | 28 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ Word 𝑉 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)) |
| 31 | 30 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑊 ∈ Word 𝑉) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑊 ∈ Word 𝑉) |
| 33 | | oveq1 7421 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
| 34 | 33 | eqcoms 2742 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
| 36 | 35 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑊 ++ 〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
| 37 | | oveq1 7421 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑤) =
(𝑁 + 2) →
((♯‘𝑤) −
1) = ((𝑁 + 2) −
1)) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → ((♯‘𝑤) − 1) = ((𝑁 + 2) −
1)) |
| 39 | | nn0cn 12520 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 40 | | 2cnd 12327 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℂ) |
| 41 | | 1cnd 11239 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
| 42 | 39, 40, 41 | addsubassd 11623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 2) − 1)
= (𝑁 + (2 −
1))) |
| 43 | | 2m1e1 12375 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2
− 1) = 1 |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (2 − 1) = 1) |
| 45 | 44 | oveq2d 7430 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + (2 − 1))
= (𝑁 + 1)) |
| 46 | 42, 45 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 2) − 1)
= (𝑁 + 1)) |
| 47 | 38, 46 | sylan9eqr 2791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((♯‘𝑤) − 1) = (𝑁 + 1)) |
| 48 | 47 | oveq2d 7430 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (𝑤 prefix ((♯‘𝑤) − 1)) = (𝑤 prefix (𝑁 + 1))) |
| 49 | 48 | oveq1d 7429 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉)) |
| 50 | | pfxlswccat 14734 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ Word 𝑉 ∧ 𝑤 ≠ ∅) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = 𝑤) |
| 51 | 7, 20, 50 | syl2an2 686 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++
〈“(lastS‘𝑤)”〉) = 𝑤) |
| 52 | 49, 51 | eqtr3d 2771 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉) = 𝑤) |
| 53 | 52 | adantrr 717 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → ((𝑤 prefix (𝑁 + 1)) ++ 〈“(lastS‘𝑤)”〉) = 𝑤) |
| 54 | 36, 53 | eqtr2d 2770 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑤 = (𝑊 ++ 〈“(lastS‘𝑤)”〉)) |
| 55 | | simprrr 781 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) |
| 56 | | wwlksnextbij0.e |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (Edg‘𝐺) |
| 57 | 4, 56 | wwlksnextbi 29861 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (lastS‘𝑤)
∈ 𝑉) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑤 = (𝑊 ++ 〈“(lastS‘𝑤)”〉) ∧
{(lastS‘𝑊),
(lastS‘𝑤)} ∈
𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺))) |
| 58 | 6, 23, 32, 54, 55, 57 | syl23anc 1378 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺))) |
| 59 | 58 | exbiri 810 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (((𝑤 ∈ Word
𝑉 ∧
(♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 60 | 59 | com23 86 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 61 | 60 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 62 | 5, 61 | mpcom 38 |
. . . . . . . . 9
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
| 63 | 62 | expcomd 416 |
. . . . . . . 8
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 64 | 63 | imp 406 |
. . . . . . 7
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
| 65 | 4, 56 | wwlknp 29810 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸)) |
| 66 | 39, 41, 41 | addassd 11266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) =
(𝑁 + (1 +
1))) |
| 67 | | 1p1e2 12374 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1) =
2 |
| 68 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (1 + 1) = 2) |
| 69 | 68 | oveq2d 7430 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + (1 + 1)) =
(𝑁 + 2)) |
| 70 | 66, 69 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) =
(𝑁 + 2)) |
| 71 | 70 | eqeq2d 2745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑤) =
((𝑁 + 1) + 1) ↔
(♯‘𝑤) = (𝑁 + 2))) |
| 72 | 71 | biimpd 229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑤) =
((𝑁 + 1) + 1) →
(♯‘𝑤) = (𝑁 + 2))) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → ((♯‘𝑤) = ((𝑁 + 1) + 1) → (♯‘𝑤) = (𝑁 + 2))) |
| 74 | 73 | com12 32 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑤) =
((𝑁 + 1) + 1) →
((𝑁 ∈
ℕ0 ∧ 𝑊
∈ Word 𝑉) →
(♯‘𝑤) = (𝑁 + 2))) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (♯‘𝑤) = (𝑁 + 2))) |
| 76 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → 𝑤 ∈ Word 𝑉) |
| 77 | 75, 76 | jctild 525 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 78 | 77 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 79 | 65, 78 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 80 | 79 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 81 | 80 | 3adant1 1130 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 82 | 5, 81 | syl 17 |
. . . . . . . 8
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 83 | 82 | adantr 480 |
. . . . . . 7
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)))) |
| 84 | 64, 83 | impbid 212 |
. . . . . 6
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))) |
| 85 | 84 | ex 412 |
. . . . 5
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))) |
| 86 | 85 | pm5.32rd 578 |
. . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))) |
| 87 | 3, 86 | bitrid 283 |
. . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))) |
| 88 | 87 | rabbidva2 3422 |
. 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) |
| 89 | 1, 88 | eqtrid 2781 |
1
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) |