MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextwrd Structured version   Visualization version   GIF version

Theorem wwlksnextwrd 28262
Description: Lemma for wwlksnextbij 28267. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
Assertion
Ref Expression
wwlksnextwrd (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑤)   𝑉(𝑤)

Proof of Theorem wwlksnextwrd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.d . 2 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
2 3anass 1094 . . . . 5 (((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((♯‘𝑤) = (𝑁 + 2) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
32bianass 639 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)))
4 wwlksnextbij0.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54wwlknbp 28207 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
6 simpl 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑁 ∈ ℕ0)
7 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ Word 𝑉)
8 nn0re 12242 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
9 2re 12047 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
11 nn0ge0 12258 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
12 2pos 12076 . . . . . . . . . . . . . . . . . . . . 21 0 < 2
1312a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 < 2)
148, 10, 11, 13addgegt0d 11548 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 2))
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (𝑁 + 2))
16 breq2 5078 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑤) = (𝑁 + 2) → (0 < (♯‘𝑤) ↔ 0 < (𝑁 + 2)))
1716ad2antll 726 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (0 < (♯‘𝑤) ↔ 0 < (𝑁 + 2)))
1815, 17mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 0 < (♯‘𝑤))
19 hashgt0n0 14080 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Word 𝑉 ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
207, 18, 19syl2an2 683 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → 𝑤 ≠ ∅)
21 lswcl 14271 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑉𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑉)
227, 20, 21syl2an2 683 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (lastS‘𝑤) ∈ 𝑉)
2322adantrr 714 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (lastS‘𝑤) ∈ 𝑉)
24 pfxcl 14390 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ Word 𝑉 → (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉)
25 eleq1 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑤 prefix (𝑁 + 1)) ∈ Word 𝑉))
2624, 25syl5ibr 245 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑤 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
2726eqcoms 2746 . . . . . . . . . . . . . . . . . . 19 ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑤 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
2827adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑤 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
2928com12 32 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ Word 𝑉 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉))
3029adantr 481 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → 𝑊 ∈ Word 𝑉))
3130imp 407 . . . . . . . . . . . . . . 15 (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑊 ∈ Word 𝑉)
3231adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑊 ∈ Word 𝑉)
33 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑊 = (𝑤 prefix (𝑁 + 1)) → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
3433eqcoms 2746 . . . . . . . . . . . . . . . . 17 ((𝑤 prefix (𝑁 + 1)) = 𝑊 → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
3534adantr 481 . . . . . . . . . . . . . . . 16 (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
3635ad2antll 726 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
37 oveq1 7282 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 2) → ((♯‘𝑤) − 1) = ((𝑁 + 2) − 1))
3837adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → ((♯‘𝑤) − 1) = ((𝑁 + 2) − 1))
39 nn0cn 12243 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
40 2cnd 12051 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
41 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4239, 40, 41addsubassd 11352 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
43 2m1e1 12099 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (2 − 1) = 1)
4544oveq2d 7291 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + (2 − 1)) = (𝑁 + 1))
4642, 45eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((𝑁 + 2) − 1) = (𝑁 + 1))
4738, 46sylan9eqr 2800 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((♯‘𝑤) − 1) = (𝑁 + 1))
4847oveq2d 7291 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → (𝑤 prefix ((♯‘𝑤) − 1)) = (𝑤 prefix (𝑁 + 1)))
4948oveq1d 7290 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩))
50 pfxlswccat 14426 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Word 𝑉𝑤 ≠ ∅) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
517, 20, 50syl2an2 683 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix ((♯‘𝑤) − 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
5249, 51eqtr3d 2780 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))) → ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
5352adantrr 714 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → ((𝑤 prefix (𝑁 + 1)) ++ ⟨“(lastS‘𝑤)”⟩) = 𝑤)
5436, 53eqtr2d 2779 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → 𝑤 = (𝑊 ++ ⟨“(lastS‘𝑤)”⟩))
55 simprrr 779 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)
56 wwlksnextbij0.e . . . . . . . . . . . . . . 15 𝐸 = (Edg‘𝐺)
574, 56wwlksnextbi 28259 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (lastS‘𝑤) ∈ 𝑉) ∧ (𝑊 ∈ Word 𝑉𝑤 = (𝑊 ++ ⟨“(lastS‘𝑤)”⟩) ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺)))
586, 23, 32, 54, 55, 57syl23anc 1376 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑊 ∈ (𝑁 WWalksN 𝐺)))
5958exbiri 808 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6059com23 86 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
61603ad2ant2 1133 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
625, 61mpcom 38 . . . . . . . . 9 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))
6362expcomd 417 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6463imp 407 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) → 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))
654, 56wwlknp 28208 . . . . . . . . . . . 12 (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸))
6639, 41, 41addassd 10997 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
67 1p1e2 12098 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
6867a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (1 + 1) = 2)
6968oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + (1 + 1)) = (𝑁 + 2))
7066, 69eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
7170eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((♯‘𝑤) = ((𝑁 + 1) + 1) ↔ (♯‘𝑤) = (𝑁 + 2)))
7271biimpd 228 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((♯‘𝑤) = ((𝑁 + 1) + 1) → (♯‘𝑤) = (𝑁 + 2)))
7372adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → ((♯‘𝑤) = ((𝑁 + 1) + 1) → (♯‘𝑤) = (𝑁 + 2)))
7473com12 32 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = ((𝑁 + 1) + 1) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (♯‘𝑤) = (𝑁 + 2)))
7574adantl 482 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (♯‘𝑤) = (𝑁 + 2)))
76 simpl 483 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → 𝑤 ∈ Word 𝑉)
7775, 76jctild 526 . . . . . . . . . . . . 13 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1)) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
78773adant3 1131 . . . . . . . . . . . 12 ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
7965, 78syl 17 . . . . . . . . . . 11 (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
8079com12 32 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
81803adant1 1129 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
825, 81syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
8382adantr 481 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2))))
8464, 83impbid 211 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)))
8584ex 413 . . . . 5 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ↔ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺))))
8685pm5.32rd 578 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = (𝑁 + 2)) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))))
873, 86syl5bb 283 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)) ↔ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸))))
8887rabbidva2 3411 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
891, 88eqtrid 2790 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  c0 4256  {cpr 4563   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205  2c2 12028  0cn0 12233  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265   ++ cconcat 14273  ⟨“cs1 14300   prefix cpfx 14383  Vtxcvtx 27366  Edgcedg 27417   WWalksN cwwlksn 28191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-wwlks 28195  df-wwlksn 28196
This theorem is referenced by:  wwlksnextsurj  28265  wwlksnextbij  28267
  Copyright terms: Public domain W3C validator