![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version |
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
Ref | Expression |
---|---|
cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1949 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
2 | vex 3492 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
3 | 2 | opelresi 6017 | . . . . . . 7 ⊢ (〈𝑡, 𝑠〉 ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 〈𝑡, 𝑠〉 ∈ 𝐹)) |
4 | vex 3492 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
5 | 2, 4 | opelcnv 5906 | . . . . . . 7 ⊢ (〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ 〈𝑡, 𝑠〉 ∈ (𝐹 ↾ 𝐴)) |
6 | 2, 4 | opelcnv 5906 | . . . . . . . 8 ⊢ (〈𝑠, 𝑡〉 ∈ ◡𝐹 ↔ 〈𝑡, 𝑠〉 ∈ 𝐹) |
7 | 6 | anbi2ci 624 | . . . . . . 7 ⊢ ((〈𝑠, 𝑡〉 ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 〈𝑡, 𝑠〉 ∈ 𝐹)) |
8 | 3, 5, 7 | 3bitr4i 303 | . . . . . 6 ⊢ (〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ (〈𝑠, 𝑡〉 ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
9 | 8 | bianass 641 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
10 | 9 | exbii 1846 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
11 | 4 | elima3 6096 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹)) |
12 | 11 | anbi1i 623 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
13 | 1, 10, 12 | 3bitr4i 303 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
14 | 4 | elima3 6096 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴))) |
15 | elin 3992 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
17 | 16 | eqriv 2737 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∩ cin 3975 〈cop 4654 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: fimacnvinrn 7105 ramub2 17061 ramub1lem2 17074 cnrest 23314 kgencn 23585 kgencn3 23587 xkoptsub 23683 qtopres 23727 qtoprest 23746 mbfid 25689 mbfres 25698 1stpreima 32718 2ndpreima 32719 gsumhashmul 33040 cvmsss2 35242 lmhmlnmsplit 43044 |
Copyright terms: Public domain | W3C validator |