![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version |
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
Ref | Expression |
---|---|
cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1954 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
2 | vex 3451 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
3 | 2 | opelresi 5949 | . . . . . . 7 ⊢ (⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
4 | vex 3451 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
5 | 2, 4 | opelcnv 5841 | . . . . . . 7 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴)) |
6 | 2, 4 | opelcnv 5841 | . . . . . . . 8 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹) |
7 | 6 | anbi2ci 626 | . . . . . . 7 ⊢ ((⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
8 | 3, 5, 7 | 3bitr4i 303 | . . . . . 6 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
9 | 8 | bianass 641 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
10 | 9 | exbii 1851 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
11 | 4 | elima3 6024 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹)) |
12 | 11 | anbi1i 625 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
13 | 1, 10, 12 | 3bitr4i 303 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
14 | 4 | elima3 6024 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴))) |
15 | elin 3930 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
17 | 16 | eqriv 2730 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∩ cin 3913 ⟨cop 4596 ◡ccnv 5636 ↾ cres 5639 “ cima 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-cnv 5645 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 |
This theorem is referenced by: fimacnvinrn 7026 ramub2 16894 ramub1lem2 16907 cnrest 22659 kgencn 22930 kgencn3 22932 xkoptsub 23028 qtopres 23072 qtoprest 23091 mbfid 25022 mbfres 25031 1stpreima 31674 2ndpreima 31675 gsumhashmul 31954 cvmsss2 33932 lmhmlnmsplit 41461 |
Copyright terms: Public domain | W3C validator |