![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version |
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
Ref | Expression |
---|---|
cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1953 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
2 | vex 3478 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
3 | 2 | opelresi 5989 | . . . . . . 7 ⊢ (⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
4 | vex 3478 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
5 | 2, 4 | opelcnv 5881 | . . . . . . 7 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴)) |
6 | 2, 4 | opelcnv 5881 | . . . . . . . 8 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹) |
7 | 6 | anbi2ci 625 | . . . . . . 7 ⊢ ((⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
8 | 3, 5, 7 | 3bitr4i 302 | . . . . . 6 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
9 | 8 | bianass 640 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
10 | 9 | exbii 1850 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
11 | 4 | elima3 6066 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹)) |
12 | 11 | anbi1i 624 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
13 | 1, 10, 12 | 3bitr4i 302 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
14 | 4 | elima3 6066 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴))) |
15 | elin 3964 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 302 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
17 | 16 | eqriv 2729 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∩ cin 3947 ⟨cop 4634 ◡ccnv 5675 ↾ cres 5678 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: fimacnvinrn 7073 ramub2 16946 ramub1lem2 16959 cnrest 22788 kgencn 23059 kgencn3 23061 xkoptsub 23157 qtopres 23201 qtoprest 23220 mbfid 25151 mbfres 25160 1stpreima 31923 2ndpreima 31924 gsumhashmul 32203 cvmsss2 34260 lmhmlnmsplit 41819 |
Copyright terms: Public domain | W3C validator |