![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version |
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
Ref | Expression |
---|---|
cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1954 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
2 | vex 3479 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
3 | 2 | opelresi 5990 | . . . . . . 7 ⊢ (⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
4 | vex 3479 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
5 | 2, 4 | opelcnv 5882 | . . . . . . 7 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴)) |
6 | 2, 4 | opelcnv 5882 | . . . . . . . 8 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹) |
7 | 6 | anbi2ci 626 | . . . . . . 7 ⊢ ((⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
8 | 3, 5, 7 | 3bitr4i 303 | . . . . . 6 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
9 | 8 | bianass 641 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
10 | 9 | exbii 1851 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
11 | 4 | elima3 6067 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹)) |
12 | 11 | anbi1i 625 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
13 | 1, 10, 12 | 3bitr4i 303 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
14 | 4 | elima3 6067 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴))) |
15 | elin 3965 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
17 | 16 | eqriv 2730 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∩ cin 3948 ⟨cop 4635 ◡ccnv 5676 ↾ cres 5679 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: fimacnvinrn 7074 ramub2 16947 ramub1lem2 16960 cnrest 22789 kgencn 23060 kgencn3 23062 xkoptsub 23158 qtopres 23202 qtoprest 23221 mbfid 25152 mbfres 25161 1stpreima 31928 2ndpreima 31929 gsumhashmul 32208 cvmsss2 34265 lmhmlnmsplit 41829 |
Copyright terms: Public domain | W3C validator |