MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresima Structured version   Visualization version   GIF version

Theorem cnvresima 6203
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)

Proof of Theorem cnvresima
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.41v 1949 . . . 4 (∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
2 vex 3451 . . . . . . . 8 𝑠 ∈ V
32opelresi 5958 . . . . . . 7 (⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴) ↔ (𝑡𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹))
4 vex 3451 . . . . . . . 8 𝑡 ∈ V
52, 4opelcnv 5845 . . . . . . 7 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴))
62, 4opelcnv 5845 . . . . . . . 8 (⟨𝑠, 𝑡⟩ ∈ 𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹)
76anbi2ci 625 . . . . . . 7 ((⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴) ↔ (𝑡𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹))
83, 5, 73bitr4i 303 . . . . . 6 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴))
98bianass 642 . . . . 5 ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
109exbii 1848 . . . 4 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
114elima3 6038 . . . . 5 (𝑡 ∈ (𝐹𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹))
1211anbi1i 624 . . . 4 ((𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
131, 10, 123bitr4i 303 . . 3 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
144elima3 6038 . . 3 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)))
15 elin 3930 . . 3 (𝑡 ∈ ((𝐹𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
1613, 14, 153bitr4i 303 . 2 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ 𝑡 ∈ ((𝐹𝐵) ∩ 𝐴))
1716eqriv 2726 1 ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  cin 3913  cop 4595  ccnv 5637  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  fimacnvinrn  7043  ramub2  16985  ramub1lem2  16998  cnrest  23172  kgencn  23443  kgencn3  23445  xkoptsub  23541  qtopres  23585  qtoprest  23604  mbfid  25536  mbfres  25545  1stpreima  32630  2ndpreima  32631  gsumhashmul  33001  cvmsss2  35261  lmhmlnmsplit  43076
  Copyright terms: Public domain W3C validator