![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version |
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
Ref | Expression |
---|---|
cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1949 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
2 | vex 3485 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
3 | 2 | opelresi 6012 | . . . . . . 7 ⊢ (〈𝑡, 𝑠〉 ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 〈𝑡, 𝑠〉 ∈ 𝐹)) |
4 | vex 3485 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
5 | 2, 4 | opelcnv 5899 | . . . . . . 7 ⊢ (〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ 〈𝑡, 𝑠〉 ∈ (𝐹 ↾ 𝐴)) |
6 | 2, 4 | opelcnv 5899 | . . . . . . . 8 ⊢ (〈𝑠, 𝑡〉 ∈ ◡𝐹 ↔ 〈𝑡, 𝑠〉 ∈ 𝐹) |
7 | 6 | anbi2ci 625 | . . . . . . 7 ⊢ ((〈𝑠, 𝑡〉 ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 〈𝑡, 𝑠〉 ∈ 𝐹)) |
8 | 3, 5, 7 | 3bitr4i 303 | . . . . . 6 ⊢ (〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ (〈𝑠, 𝑡〉 ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
9 | 8 | bianass 642 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
10 | 9 | exbii 1847 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
11 | 4 | elima3 6092 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹)) |
12 | 11 | anbi1i 624 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
13 | 1, 10, 12 | 3bitr4i 303 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
14 | 4 | elima3 6092 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴))) |
15 | elin 3982 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
17 | 16 | eqriv 2734 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2108 ∩ cin 3965 〈cop 4640 ◡ccnv 5692 ↾ cres 5695 “ cima 5696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 |
This theorem is referenced by: fimacnvinrn 7098 ramub2 17057 ramub1lem2 17070 cnrest 23318 kgencn 23589 kgencn3 23591 xkoptsub 23687 qtopres 23731 qtoprest 23750 mbfid 25695 mbfres 25704 1stpreima 32736 2ndpreima 32737 gsumhashmul 33079 cvmsss2 35272 lmhmlnmsplit 43092 |
Copyright terms: Public domain | W3C validator |