![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version |
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
Ref | Expression |
---|---|
cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1951 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
2 | vex 3476 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
3 | 2 | opelresi 5988 | . . . . . . 7 ⊢ (⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
4 | vex 3476 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
5 | 2, 4 | opelcnv 5880 | . . . . . . 7 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹 ↾ 𝐴)) |
6 | 2, 4 | opelcnv 5880 | . . . . . . . 8 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹) |
7 | 6 | anbi2ci 623 | . . . . . . 7 ⊢ ((⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹)) |
8 | 3, 5, 7 | 3bitr4i 302 | . . . . . 6 ⊢ (⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
9 | 8 | bianass 638 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
10 | 9 | exbii 1848 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
11 | 4 | elima3 6065 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹)) |
12 | 11 | anbi1i 622 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
13 | 1, 10, 12 | 3bitr4i 302 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
14 | 4 | elima3 6065 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ ◡(𝐹 ↾ 𝐴))) |
15 | elin 3963 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
16 | 13, 14, 15 | 3bitr4i 302 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
17 | 16 | eqriv 2727 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∩ cin 3946 ⟨cop 4633 ◡ccnv 5674 ↾ cres 5677 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: fimacnvinrn 7072 ramub2 16951 ramub1lem2 16964 cnrest 23009 kgencn 23280 kgencn3 23282 xkoptsub 23378 qtopres 23422 qtoprest 23441 mbfid 25384 mbfres 25393 1stpreima 32195 2ndpreima 32196 gsumhashmul 32478 cvmsss2 34563 lmhmlnmsplit 42131 |
Copyright terms: Public domain | W3C validator |