MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresima Structured version   Visualization version   GIF version

Theorem cnvresima 6177
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)

Proof of Theorem cnvresima
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.41v 1950 . . . 4 (∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
2 vex 3440 . . . . . . . 8 𝑠 ∈ V
32opelresi 5935 . . . . . . 7 (⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴) ↔ (𝑡𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹))
4 vex 3440 . . . . . . . 8 𝑡 ∈ V
52, 4opelcnv 5820 . . . . . . 7 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴))
62, 4opelcnv 5820 . . . . . . . 8 (⟨𝑠, 𝑡⟩ ∈ 𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹)
76anbi2ci 625 . . . . . . 7 ((⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴) ↔ (𝑡𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹))
83, 5, 73bitr4i 303 . . . . . 6 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴))
98bianass 642 . . . . 5 ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
109exbii 1849 . . . 4 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
114elima3 6015 . . . . 5 (𝑡 ∈ (𝐹𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹))
1211anbi1i 624 . . . 4 ((𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
131, 10, 123bitr4i 303 . . 3 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
144elima3 6015 . . 3 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)))
15 elin 3913 . . 3 (𝑡 ∈ ((𝐹𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
1613, 14, 153bitr4i 303 . 2 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ 𝑡 ∈ ((𝐹𝐵) ∩ 𝐴))
1716eqriv 2728 1 ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  cin 3896  cop 4579  ccnv 5613  cres 5616  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  fimacnvinrn  7004  ramub2  16926  ramub1lem2  16939  cnrest  23200  kgencn  23471  kgencn3  23473  xkoptsub  23569  qtopres  23613  qtoprest  23632  mbfid  25563  mbfres  25572  1stpreima  32688  2ndpreima  32689  gsumhashmul  33041  cvmsss2  35318  lmhmlnmsplit  43179
  Copyright terms: Public domain W3C validator