| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvresima | Structured version Visualization version GIF version | ||
| Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvresima | ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . . . 4 ⊢ (∃𝑠((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) | |
| 2 | vex 3448 | . . . . . . . 8 ⊢ 𝑠 ∈ V | |
| 3 | 2 | opelresi 5947 | . . . . . . 7 ⊢ (〈𝑡, 𝑠〉 ∈ (𝐹 ↾ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 〈𝑡, 𝑠〉 ∈ 𝐹)) |
| 4 | vex 3448 | . . . . . . . 8 ⊢ 𝑡 ∈ V | |
| 5 | 2, 4 | opelcnv 5835 | . . . . . . 7 ⊢ (〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ 〈𝑡, 𝑠〉 ∈ (𝐹 ↾ 𝐴)) |
| 6 | 2, 4 | opelcnv 5835 | . . . . . . . 8 ⊢ (〈𝑠, 𝑡〉 ∈ ◡𝐹 ↔ 〈𝑡, 𝑠〉 ∈ 𝐹) |
| 7 | 6 | anbi2ci 625 | . . . . . . 7 ⊢ ((〈𝑠, 𝑡〉 ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 〈𝑡, 𝑠〉 ∈ 𝐹)) |
| 8 | 3, 5, 7 | 3bitr4i 303 | . . . . . 6 ⊢ (〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴) ↔ (〈𝑠, 𝑡〉 ∈ ◡𝐹 ∧ 𝑡 ∈ 𝐴)) |
| 9 | 8 | bianass 642 | . . . . 5 ⊢ ((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ ((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
| 10 | 9 | exbii 1848 | . . . 4 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ ∃𝑠((𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
| 11 | 4 | elima3 6027 | . . . . 5 ⊢ (𝑡 ∈ (◡𝐹 “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹)) |
| 12 | 11 | anbi1i 624 | . . . 4 ⊢ ((𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴) ↔ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡𝐹) ∧ 𝑡 ∈ 𝐴)) |
| 13 | 1, 10, 12 | 3bitr4i 303 | . . 3 ⊢ (∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴)) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) |
| 14 | 4 | elima3 6027 | . . 3 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 〈𝑠, 𝑡〉 ∈ ◡(𝐹 ↾ 𝐴))) |
| 15 | elin 3927 | . . 3 ⊢ (𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (◡𝐹 “ 𝐵) ∧ 𝑡 ∈ 𝐴)) | |
| 16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝑡 ∈ (◡(𝐹 ↾ 𝐴) “ 𝐵) ↔ 𝑡 ∈ ((◡𝐹 “ 𝐵) ∩ 𝐴)) |
| 17 | 16 | eqriv 2726 | 1 ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∩ cin 3910 〈cop 4591 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: fimacnvinrn 7025 ramub2 16962 ramub1lem2 16975 cnrest 23206 kgencn 23477 kgencn3 23479 xkoptsub 23575 qtopres 23619 qtoprest 23638 mbfid 25570 mbfres 25579 1stpreima 32681 2ndpreima 32682 gsumhashmul 33045 cvmsss2 35255 lmhmlnmsplit 43070 |
| Copyright terms: Public domain | W3C validator |