MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresima Structured version   Visualization version   GIF version

Theorem cnvresima 6192
Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
Assertion
Ref Expression
cnvresima ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)

Proof of Theorem cnvresima
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.41v 1949 . . . 4 (∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
2 vex 3448 . . . . . . . 8 𝑠 ∈ V
32opelresi 5948 . . . . . . 7 (⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴) ↔ (𝑡𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹))
4 vex 3448 . . . . . . . 8 𝑡 ∈ V
52, 4opelcnv 5836 . . . . . . 7 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ ⟨𝑡, 𝑠⟩ ∈ (𝐹𝐴))
62, 4opelcnv 5836 . . . . . . . 8 (⟨𝑠, 𝑡⟩ ∈ 𝐹 ↔ ⟨𝑡, 𝑠⟩ ∈ 𝐹)
76anbi2ci 625 . . . . . . 7 ((⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴) ↔ (𝑡𝐴 ∧ ⟨𝑡, 𝑠⟩ ∈ 𝐹))
83, 5, 73bitr4i 303 . . . . . 6 (⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴) ↔ (⟨𝑠, 𝑡⟩ ∈ 𝐹𝑡𝐴))
98bianass 642 . . . . 5 ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
109exbii 1848 . . . 4 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ ∃𝑠((𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
114elima3 6028 . . . . 5 (𝑡 ∈ (𝐹𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹))
1211anbi1i 624 . . . 4 ((𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴) ↔ (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ 𝐹) ∧ 𝑡𝐴))
131, 10, 123bitr4i 303 . . 3 (∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
144elima3 6028 . . 3 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ ∃𝑠(𝑠𝐵 ∧ ⟨𝑠, 𝑡⟩ ∈ (𝐹𝐴)))
15 elin 3927 . . 3 (𝑡 ∈ ((𝐹𝐵) ∩ 𝐴) ↔ (𝑡 ∈ (𝐹𝐵) ∧ 𝑡𝐴))
1613, 14, 153bitr4i 303 . 2 (𝑡 ∈ ((𝐹𝐴) “ 𝐵) ↔ 𝑡 ∈ ((𝐹𝐵) ∩ 𝐴))
1716eqriv 2726 1 ((𝐹𝐴) “ 𝐵) = ((𝐹𝐵) ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  cin 3910  cop 4591  ccnv 5630  cres 5633  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  fimacnvinrn  7026  ramub2  16963  ramub1lem2  16976  cnrest  23207  kgencn  23478  kgencn3  23480  xkoptsub  23576  qtopres  23620  qtoprest  23639  mbfid  25571  mbfres  25580  1stpreima  32682  2ndpreima  32683  gsumhashmul  33046  cvmsss2  35256  lmhmlnmsplit  43071
  Copyright terms: Public domain W3C validator