MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grpr2 Structured version   Visualization version   GIF version

Theorem nb3grpr2 27317
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
nb3grpr.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
Assertion
Ref Expression
nb3grpr2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))

Proof of Theorem nb3grpr2
StepHypRef Expression
1 3anan32 1098 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))
21a1i 11 . . . 4 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸)))
3 prcom 4620 . . . . . . . . . 10 {𝐶, 𝐴} = {𝐴, 𝐶}
43eleq1i 2823 . . . . . . . . 9 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
54biimpi 219 . . . . . . . 8 ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸)
65pm4.71i 563 . . . . . . 7 ({𝐶, 𝐴} ∈ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
76bianass 642 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸))
87anbi1i 627 . . . . 5 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))
9 anass 472 . . . . 5 (((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
108, 9bitri 278 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
112, 10bitrdi 290 . . 3 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))))
12 prcom 4620 . . . . . . . . . 10 {𝐴, 𝐵} = {𝐵, 𝐴}
1312eleq1i 2823 . . . . . . . . 9 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
1413biimpi 219 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 → {𝐵, 𝐴} ∈ 𝐸)
1514pm4.71i 563 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))
1615anbi1i 627 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸))
17 df-3an 1090 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸))
1816, 17bitr4i 281 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
19 prcom 4620 . . . . . . . . . 10 {𝐵, 𝐶} = {𝐶, 𝐵}
2019eleq1i 2823 . . . . . . . . 9 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸)
2120biimpi 219 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 → {𝐶, 𝐵} ∈ 𝐸)
2221pm4.71i 563 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2322anbi2i 626 . . . . . 6 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
24 3anass 1096 . . . . . 6 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2523, 24bitr4i 281 . . . . 5 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2618, 25anbi12i 630 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
27 an6 1446 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2826, 27bitri 278 . . 3 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2911, 28bitrdi 290 . 2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
30 nb3grpr.v . . . 4 𝑉 = (Vtx‘𝐺)
31 nb3grpr.e . . . 4 𝐸 = (Edg‘𝐺)
32 nb3grpr.g . . . 4 (𝜑𝐺 ∈ USGraph)
33 nb3grpr.t . . . 4 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
34 nb3grpr.s . . . 4 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
3530, 31, 32, 33, 34nb3grprlem1 27314 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
36 tpcoma 4638 . . . . 5 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
3733, 36eqtrdi 2789 . . . 4 (𝜑𝑉 = {𝐵, 𝐴, 𝐶})
38 3ancoma 1099 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐴𝑋𝐶𝑍))
3934, 38sylib 221 . . . 4 (𝜑 → (𝐵𝑌𝐴𝑋𝐶𝑍))
4030, 31, 32, 37, 39nb3grprlem1 27314 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
41 tprot 4637 . . . . 5 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
4233, 41eqtr4di 2791 . . . 4 (𝜑𝑉 = {𝐶, 𝐴, 𝐵})
43 3anrot 1101 . . . . 5 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
4434, 43sylibr 237 . . . 4 (𝜑 → (𝐶𝑍𝐴𝑋𝐵𝑌))
4530, 31, 32, 42, 44nb3grprlem1 27314 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
4635, 40, 453anbi123d 1437 . 2 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
4729, 46bitr4d 285 1 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  {cpr 4515  {ctp 4517  cfv 6333  (class class class)co 7164  Vtxcvtx 26933  Edgcedg 26984  USGraphcusgr 27086   NeighbVtx cnbgr 27266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-n0 11970  df-xnn0 12042  df-z 12056  df-uz 12318  df-fz 12975  df-hash 13776  df-edg 26985  df-upgr 27019  df-umgr 27020  df-usgr 27088  df-nbgr 27267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator