MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grpr2 Structured version   Visualization version   GIF version

Theorem nb3grpr2 29356
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
nb3grpr.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
Assertion
Ref Expression
nb3grpr2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))

Proof of Theorem nb3grpr2
StepHypRef Expression
1 3anan32 1096 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))
21a1i 11 . . . 4 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸)))
3 prcom 4680 . . . . . . . . . 10 {𝐶, 𝐴} = {𝐴, 𝐶}
43eleq1i 2822 . . . . . . . . 9 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
54biimpi 216 . . . . . . . 8 ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸)
65pm4.71i 559 . . . . . . 7 ({𝐶, 𝐴} ∈ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
76bianass 642 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸))
87anbi1i 624 . . . . 5 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))
9 anass 468 . . . . 5 (((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
108, 9bitri 275 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
112, 10bitrdi 287 . . 3 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))))
12 prcom 4680 . . . . . . . . . 10 {𝐴, 𝐵} = {𝐵, 𝐴}
1312eleq1i 2822 . . . . . . . . 9 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
1413biimpi 216 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 → {𝐵, 𝐴} ∈ 𝐸)
1514pm4.71i 559 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))
1615anbi1i 624 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸))
17 df-3an 1088 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸))
1816, 17bitr4i 278 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
19 prcom 4680 . . . . . . . . . 10 {𝐵, 𝐶} = {𝐶, 𝐵}
2019eleq1i 2822 . . . . . . . . 9 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸)
2120biimpi 216 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 → {𝐶, 𝐵} ∈ 𝐸)
2221pm4.71i 559 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2322anbi2i 623 . . . . . 6 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
24 3anass 1094 . . . . . 6 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2523, 24bitr4i 278 . . . . 5 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2618, 25anbi12i 628 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
27 an6 1447 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2826, 27bitri 275 . . 3 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2911, 28bitrdi 287 . 2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
30 nb3grpr.v . . . 4 𝑉 = (Vtx‘𝐺)
31 nb3grpr.e . . . 4 𝐸 = (Edg‘𝐺)
32 nb3grpr.g . . . 4 (𝜑𝐺 ∈ USGraph)
33 nb3grpr.t . . . 4 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
34 nb3grpr.s . . . 4 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
3530, 31, 32, 33, 34nb3grprlem1 29353 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
36 tpcoma 4698 . . . . 5 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
3733, 36eqtrdi 2782 . . . 4 (𝜑𝑉 = {𝐵, 𝐴, 𝐶})
38 3ancoma 1097 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐴𝑋𝐶𝑍))
3934, 38sylib 218 . . . 4 (𝜑 → (𝐵𝑌𝐴𝑋𝐶𝑍))
4030, 31, 32, 37, 39nb3grprlem1 29353 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
41 tprot 4697 . . . . 5 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
4233, 41eqtr4di 2784 . . . 4 (𝜑𝑉 = {𝐶, 𝐴, 𝐵})
43 3anrot 1099 . . . . 5 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
4434, 43sylibr 234 . . . 4 (𝜑 → (𝐶𝑍𝐴𝑋𝐵𝑌))
4530, 31, 32, 42, 44nb3grprlem1 29353 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
4635, 40, 453anbi123d 1438 . 2 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
4729, 46bitr4d 282 1 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {cpr 4573  {ctp 4575  cfv 6476  (class class class)co 7341  Vtxcvtx 28969  Edgcedg 29020  USGraphcusgr 29122   NeighbVtx cnbgr 29305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-hash 14233  df-edg 29021  df-upgr 29055  df-umgr 29056  df-usgr 29124  df-nbgr 29306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator