Proof of Theorem nb3grpr2
| Step | Hyp | Ref
| Expression |
| 1 | | 3anan32 1097 |
. . . . 5
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 3 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
| 4 | 3 | eleq1i 2832 |
. . . . . . . . 9
⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸) |
| 5 | 4 | biimpi 216 |
. . . . . . . 8
⊢ ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸) |
| 6 | 5 | pm4.71i 559 |
. . . . . . 7
⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
| 7 | 6 | bianass 642 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸)) |
| 8 | 7 | anbi1i 624 |
. . . . 5
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| 9 | | anass 468 |
. . . . 5
⊢
(((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 10 | 8, 9 | bitri 275 |
. . . 4
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 11 | 2, 10 | bitrdi 287 |
. . 3
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) |
| 12 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| 13 | 12 | eleq1i 2832 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸) |
| 14 | 13 | biimpi 216 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ 𝐸 → {𝐵, 𝐴} ∈ 𝐸) |
| 15 | 14 | pm4.71i 559 |
. . . . . . 7
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸)) |
| 16 | 15 | anbi1i 624 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸)) |
| 17 | | df-3an 1089 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸)) |
| 18 | 16, 17 | bitr4i 278 |
. . . . 5
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
| 19 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐵, 𝐶} = {𝐶, 𝐵} |
| 20 | 19 | eleq1i 2832 |
. . . . . . . . 9
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸) |
| 21 | 20 | biimpi 216 |
. . . . . . . 8
⊢ ({𝐵, 𝐶} ∈ 𝐸 → {𝐶, 𝐵} ∈ 𝐸) |
| 22 | 21 | pm4.71i 559 |
. . . . . . 7
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 23 | 22 | anbi2i 623 |
. . . . . 6
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 24 | | 3anass 1095 |
. . . . . 6
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 25 | 23, 24 | bitr4i 278 |
. . . . 5
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 26 | 18, 25 | anbi12i 628 |
. . . 4
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 27 | | an6 1447 |
. . . 4
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 28 | 26, 27 | bitri 275 |
. . 3
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 29 | 11, 28 | bitrdi 287 |
. 2
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 30 | | nb3grpr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 31 | | nb3grpr.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
| 32 | | nb3grpr.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ USGraph) |
| 33 | | nb3grpr.t |
. . . 4
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
| 34 | | nb3grpr.s |
. . . 4
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 35 | 30, 31, 32, 33, 34 | nb3grprlem1 29397 |
. . 3
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
| 36 | | tpcoma 4750 |
. . . . 5
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
| 37 | 33, 36 | eqtrdi 2793 |
. . . 4
⊢ (𝜑 → 𝑉 = {𝐵, 𝐴, 𝐶}) |
| 38 | | 3ancoma 1098 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ↔ (𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍)) |
| 39 | 34, 38 | sylib 218 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍)) |
| 40 | 30, 31, 32, 37, 39 | nb3grprlem1 29397 |
. . 3
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
| 41 | | tprot 4749 |
. . . . 5
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
| 42 | 33, 41 | eqtr4di 2795 |
. . . 4
⊢ (𝜑 → 𝑉 = {𝐶, 𝐴, 𝐵}) |
| 43 | | 3anrot 1100 |
. . . . 5
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 44 | 34, 43 | sylibr 234 |
. . . 4
⊢ (𝜑 → (𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
| 45 | 30, 31, 32, 42, 44 | nb3grprlem1 29397 |
. . 3
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 46 | 35, 40, 45 | 3anbi123d 1438 |
. 2
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 47 | 29, 46 | bitr4d 282 |
1
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) |