Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elcncf1di | Structured version Visualization version GIF version |
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
elcncf1d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
elcncf1d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) |
elcncf1d.3 | ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
Ref | Expression |
---|---|
elcncf1di | ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcncf1d.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | elcncf1d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) | |
3 | 2 | imp 410 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+) |
4 | an32 646 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴)) | |
5 | 4 | bianass 642 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴)) |
6 | elcncf1d.3 | . . . . . . . 8 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) | |
7 | 6 | imp 410 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
8 | 5, 7 | sylbir 238 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ 𝐴) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
9 | 8 | ralrimiva 3105 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
10 | breq2 5057 | . . . . . 6 ⊢ (𝑧 = 𝑍 → ((abs‘(𝑥 − 𝑤)) < 𝑧 ↔ (abs‘(𝑥 − 𝑤)) < 𝑍)) | |
11 | 10 | rspceaimv 3542 | . . . . 5 ⊢ ((𝑍 ∈ ℝ+ ∧ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
12 | 3, 9, 11 | syl2anc 587 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
13 | 12 | ralrimivva 3112 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
14 | 1, 13 | jca 515 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
15 | elcncf 23786 | . 2 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) | |
16 | 14, 15 | syl5ibrcom 250 | 1 ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 class class class wbr 5053 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 < clt 10867 − cmin 11062 ℝ+crp 12586 abscabs 14797 –cn→ccncf 23773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-cncf 23775 |
This theorem is referenced by: elcncf1ii 23793 |
Copyright terms: Public domain | W3C validator |