MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf1di Structured version   Visualization version   GIF version

Theorem elcncf1di 24058
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1 (𝜑𝐹:𝐴𝐵)
elcncf1d.2 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
elcncf1d.3 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
Assertion
Ref Expression
elcncf1di (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝜑,𝑤,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1di
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 elcncf1d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
32imp 407 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+)
4 an32 643 . . . . . . . 8 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴))
54bianass 639 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴))
6 elcncf1d.3 . . . . . . . 8 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
76imp 407 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
85, 7sylbir 234 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
98ralrimiva 3103 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
10 breq2 5078 . . . . . 6 (𝑧 = 𝑍 → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑍))
1110rspceaimv 3565 . . . . 5 ((𝑍 ∈ ℝ+ ∧ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
123, 9, 11syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1312ralrimivva 3123 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
141, 13jca 512 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 elcncf 24052 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1614, 15syl5ibrcom 246 1 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cc 10869   < clt 11009  cmin 11205  +crp 12730  abscabs 14945  cnccncf 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-cncf 24041
This theorem is referenced by:  elcncf1ii  24059
  Copyright terms: Public domain W3C validator