MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf1di Structured version   Visualization version   GIF version

Theorem elcncf1di 24795
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1 (𝜑𝐹:𝐴𝐵)
elcncf1d.2 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
elcncf1d.3 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
Assertion
Ref Expression
elcncf1di (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝜑,𝑤,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1di
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 elcncf1d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
32imp 406 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑍 ∈ ℝ+)
4 an32 646 . . . . . . . 8 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) ↔ ((𝑥𝐴𝑦 ∈ ℝ+) ∧ 𝑤𝐴))
54bianass 642 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) ↔ ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴))
6 elcncf1d.3 . . . . . . . 8 (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
76imp 406 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+)) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
85, 7sylbir 235 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑤𝐴) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
98ralrimiva 3126 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
10 breq2 5114 . . . . . 6 (𝑧 = 𝑍 → ((abs‘(𝑥𝑤)) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑍))
1110rspceaimv 3597 . . . . 5 ((𝑍 ∈ ℝ+ ∧ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
123, 9, 11syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
1312ralrimivva 3181 . . 3 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
141, 13jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 elcncf 24789 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1614, 15syl5ibrcom 247 1 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073   < clt 11215  cmin 11412  +crp 12958  abscabs 15207  cnccncf 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-cncf 24778
This theorem is referenced by:  elcncf1ii  24796
  Copyright terms: Public domain W3C validator