Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbsngVD Structured version   Visualization version   GIF version

Theorem csbsngVD 44866
Description: Virtual deduction proof of csbsng 4662. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4662 is csbsngVD 44866 without virtual deductions and was automatically derived from csbsngVD 44866.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbsngVD (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsngVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44548 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbceqg 4365 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵))
31, 2e1a 44601 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
4 csbconstg 3872 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
51, 4e1a 44601 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
6 eqeq1 2733 . . . . . . . . 9 (𝐴 / 𝑥𝑦 = 𝑦 → (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵))
75, 6e1a 44601 . . . . . . . 8 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
8 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)))
98biimprd 248 . . . . . . . 8 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)))
103, 7, 9e11 44662 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
1110gen11 44590 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
12 abbib 2798 . . . . . . 7 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ ∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵))
1312biimpri 228 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
1411, 13e1a 44601 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
15 csbab 4393 . . . . . . . 8 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵}
1615a1i 11 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵})
1716eqcomd 2735 . . . . . 6 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
181, 17e1a 44601 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
19 eqeq1 2733 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2019biimpcd 249 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2114, 18, 20e11 44662 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
22 df-sn 4580 . . . . . 6 {𝐵} = {𝑦𝑦 = 𝐵}
2322ax-gen 1795 . . . . 5 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
24 csbeq2 3858 . . . . . 6 (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
2524a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}))
261, 23, 25e10 44668 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
27 eqeq2 2741 . . . . 5 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2827biimpd 229 . . . 4 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2921, 26, 28e11 44662 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
30 df-sn 4580 . . 3 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
31 eqeq2 2741 . . . 4 ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
3231biimprcd 250 . . 3 (𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}))
3329, 30, 32e10 44668 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
3433in1 44545 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2707  [wsbc 3744  csb 3853  {csn 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-nul 4287  df-sn 4580  df-vd1 44544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator