Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbsngVD Structured version   Visualization version   GIF version

Theorem csbsngVD 44875
Description: Virtual deduction proof of csbsng 4674. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4674 is csbsngVD 44875 without virtual deductions and was automatically derived from csbsngVD 44875.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbsngVD (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsngVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44557 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbceqg 4377 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵))
31, 2e1a 44610 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
4 csbconstg 3883 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
51, 4e1a 44610 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
6 eqeq1 2734 . . . . . . . . 9 (𝐴 / 𝑥𝑦 = 𝑦 → (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵))
75, 6e1a 44610 . . . . . . . 8 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
8 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)))
98biimprd 248 . . . . . . . 8 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)))
103, 7, 9e11 44671 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
1110gen11 44599 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
12 abbib 2799 . . . . . . 7 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ ∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵))
1312biimpri 228 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
1411, 13e1a 44610 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
15 csbab 4405 . . . . . . . 8 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵}
1615a1i 11 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵})
1716eqcomd 2736 . . . . . 6 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
181, 17e1a 44610 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
19 eqeq1 2734 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2019biimpcd 249 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2114, 18, 20e11 44671 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
22 df-sn 4592 . . . . . 6 {𝐵} = {𝑦𝑦 = 𝐵}
2322ax-gen 1795 . . . . 5 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
24 csbeq2 3869 . . . . . 6 (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
2524a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}))
261, 23, 25e10 44677 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
27 eqeq2 2742 . . . . 5 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2827biimpd 229 . . . 4 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2921, 26, 28e11 44671 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
30 df-sn 4592 . . 3 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
31 eqeq2 2742 . . . 4 ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
3231biimprcd 250 . . 3 (𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}))
3329, 30, 32e10 44677 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
3433in1 44554 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2708  [wsbc 3755  csb 3864  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-nul 4299  df-sn 4592  df-vd1 44553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator