Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbsngVD Structured version   Visualization version   GIF version

Theorem csbsngVD 44904
Description: Virtual deduction proof of csbsng 4659. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4659 is csbsngVD 44904 without virtual deductions and was automatically derived from csbsngVD 44904.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbsngVD (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsngVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 44586 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbceqg 4360 . . . . . . . . 9 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵))
31, 2e1a 44639 . . . . . . . 8 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
4 csbconstg 3867 . . . . . . . . . 10 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
51, 4e1a 44639 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
6 eqeq1 2734 . . . . . . . . 9 (𝐴 / 𝑥𝑦 = 𝑦 → (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵))
75, 6e1a 44639 . . . . . . . 8 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
8 bibi1 351 . . . . . . . . 9 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)))
98biimprd 248 . . . . . . . 8 (([𝐴 / 𝑥]𝑦 = 𝐵𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)))
103, 7, 9e11 44700 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
1110gen11 44628 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
12 abbib 2799 . . . . . . 7 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ ∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵))
1312biimpri 228 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
1411, 13e1a 44639 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
15 csbab 4388 . . . . . . . 8 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵}
1615a1i 11 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵})
1716eqcomd 2736 . . . . . 6 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
181, 17e1a 44639 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
19 eqeq1 2734 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2019biimpcd 249 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2114, 18, 20e11 44700 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
22 df-sn 4575 . . . . . 6 {𝐵} = {𝑦𝑦 = 𝐵}
2322ax-gen 1796 . . . . 5 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
24 csbeq2 3853 . . . . . 6 (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵})
2524a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥{𝐵} = {𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}))
261, 23, 25e10 44706 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
27 eqeq2 2742 . . . . 5 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2827biimpd 229 . . . 4 (𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵} → 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
2921, 26, 28e11 44700 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
30 df-sn 4575 . . 3 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
31 eqeq2 2742 . . . 4 ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} ↔ 𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}))
3231biimprcd 250 . . 3 (𝐴 / 𝑥{𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → ({𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}))
3329, 30, 32e10 44706 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
3433in1 44583 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2110  {cab 2708  [wsbc 3739  csb 3848  {csn 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-nul 4282  df-sn 4575  df-vd1 44582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator