| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
| 6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
| 7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
| 8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nd 801 sbcrext 3836 rmob 3853 elpr2g 4615 oteqex 5460 epelg 5539 eqbrrdva 5833 relbrcnvg 6076 ordsucuniel 7799 ordsucun 7800 xpord2pred 8124 brtpos2 8211 eceqoveq 8795 elpmg 8816 elfi2 9365 brwdom 9520 brwdomn0 9522 rankr1c 9774 r1pwcl 9800 ttukeylem1 10462 fpwwe2lem8 10591 eltskm 10796 recmulnq 10917 clim 15460 rlim 15461 lo1o1 15498 o1lo1 15503 o1lo12 15504 rlimresb 15531 lo1eq 15534 rlimeq 15535 isercolllem2 15632 caucvgb 15646 saddisj 16435 sadadd 16437 sadass 16441 bitsshft 16445 smupvallem 16453 smumul 16463 catpropd 17670 isssc 17782 issubc 17797 funcres2b 17859 funcres2c 17865 sgrppropd 18658 mndpropd 18686 issubg3 19076 resghm2b 19166 resscntz 19265 elsymgbas 19304 odmulg 19486 dmdprd 19930 dprdw 19942 subgdmdprd 19966 lmodprop2d 20830 lssacs 20873 prmirred 21384 lindfmm 21736 lsslindf 21739 islinds3 21743 assapropd 21781 psrbaglefi 21835 cnrest2 23173 cnprest 23176 cnprest2 23177 lmss 23185 isfildlem 23744 isfcls 23896 elutop 24121 metustel 24438 blval2 24450 dscopn 24461 iscau2 25177 causs 25198 ismbf 25529 ismbfcn 25530 iblcnlem 25690 limcdif 25777 limcres 25787 limcun 25796 dvres 25812 q1peqb 26061 ulmval 26289 ulmres 26297 chpchtsum 27130 dchrisum0lem1 27427 elmade 27779 axcontlem5 28895 iswlkg 29541 issiga 34102 ismeas 34189 elcarsg 34296 cvmlift3lem4 35309 msrrcl 35530 brcolinear2 36046 topfneec 36343 bj-epelg 37056 cnpwstotbnd 37791 ismtyima 37797 ismndo2 37868 isrngo 37891 lshpkr 39110 fimgmcyc 42522 elrfi 42682 traxext 44967 climf 45620 climf2 45664 isupwlkg 48125 |
| Copyright terms: Public domain | W3C validator |