| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
| 6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
| 7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
| 8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nd 801 sbcrext 3839 rmob 3856 elpr2g 4618 oteqex 5463 epelg 5542 eqbrrdva 5836 relbrcnvg 6079 ordsucuniel 7802 ordsucun 7803 xpord2pred 8127 brtpos2 8214 eceqoveq 8798 elpmg 8819 elfi2 9372 brwdom 9527 brwdomn0 9529 rankr1c 9781 r1pwcl 9807 ttukeylem1 10469 fpwwe2lem8 10598 eltskm 10803 recmulnq 10924 clim 15467 rlim 15468 lo1o1 15505 o1lo1 15510 o1lo12 15511 rlimresb 15538 lo1eq 15541 rlimeq 15542 isercolllem2 15639 caucvgb 15653 saddisj 16442 sadadd 16444 sadass 16448 bitsshft 16452 smupvallem 16460 smumul 16470 catpropd 17677 isssc 17789 issubc 17804 funcres2b 17866 funcres2c 17872 sgrppropd 18665 mndpropd 18693 issubg3 19083 resghm2b 19173 resscntz 19272 elsymgbas 19311 odmulg 19493 dmdprd 19937 dprdw 19949 subgdmdprd 19973 lmodprop2d 20837 lssacs 20880 prmirred 21391 lindfmm 21743 lsslindf 21746 islinds3 21750 assapropd 21788 psrbaglefi 21842 cnrest2 23180 cnprest 23183 cnprest2 23184 lmss 23192 isfildlem 23751 isfcls 23903 elutop 24128 metustel 24445 blval2 24457 dscopn 24468 iscau2 25184 causs 25205 ismbf 25536 ismbfcn 25537 iblcnlem 25697 limcdif 25784 limcres 25794 limcun 25803 dvres 25819 q1peqb 26068 ulmval 26296 ulmres 26304 chpchtsum 27137 dchrisum0lem1 27434 elmade 27786 axcontlem5 28902 iswlkg 29548 issiga 34109 ismeas 34196 elcarsg 34303 cvmlift3lem4 35316 msrrcl 35537 brcolinear2 36053 topfneec 36350 bj-epelg 37063 cnpwstotbnd 37798 ismtyima 37804 ismndo2 37875 isrngo 37898 lshpkr 39117 fimgmcyc 42529 elrfi 42689 traxext 44974 climf 45627 climf2 45671 isupwlkg 48129 |
| Copyright terms: Public domain | W3C validator |