| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
| 6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
| 7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
| 8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nd 801 sbcrext 3824 rmob 3841 elpr2g 4602 oteqex 5440 epelg 5517 eqbrrdva 5809 relbrcnvg 6054 ordsucuniel 7754 ordsucun 7755 xpord2pred 8075 brtpos2 8162 eceqoveq 8746 elpmg 8767 elfi2 9298 brwdom 9453 brwdomn0 9455 rankr1c 9711 r1pwcl 9737 ttukeylem1 10397 fpwwe2lem8 10526 eltskm 10731 recmulnq 10852 clim 15398 rlim 15399 lo1o1 15436 o1lo1 15441 o1lo12 15442 rlimresb 15469 lo1eq 15472 rlimeq 15473 isercolllem2 15570 caucvgb 15584 saddisj 16373 sadadd 16375 sadass 16379 bitsshft 16383 smupvallem 16391 smumul 16401 catpropd 17612 isssc 17724 issubc 17739 funcres2b 17801 funcres2c 17807 sgrppropd 18636 mndpropd 18664 issubg3 19054 resghm2b 19144 resscntz 19243 elsymgbas 19284 odmulg 19466 dmdprd 19910 dprdw 19922 subgdmdprd 19946 lmodprop2d 20855 lssacs 20898 prmirred 21409 lindfmm 21762 lsslindf 21765 islinds3 21769 assapropd 21807 psrbaglefi 21861 cnrest2 23199 cnprest 23202 cnprest2 23203 lmss 23211 isfildlem 23770 isfcls 23922 elutop 24146 metustel 24463 blval2 24475 dscopn 24486 iscau2 25202 causs 25223 ismbf 25554 ismbfcn 25555 iblcnlem 25715 limcdif 25802 limcres 25812 limcun 25821 dvres 25837 q1peqb 26086 ulmval 26314 ulmres 26322 chpchtsum 27155 dchrisum0lem1 27452 elmade 27810 axcontlem5 28944 iswlkg 29590 issiga 34120 ismeas 34207 elcarsg 34313 cvmlift3lem4 35354 msrrcl 35575 brcolinear2 36091 topfneec 36388 bj-epelg 37101 cnpwstotbnd 37836 ismtyima 37842 ismndo2 37913 isrngo 37936 lshpkr 39155 fimgmcyc 42566 elrfi 42726 traxext 45009 climf 45661 climf2 45703 isupwlkg 48167 |
| Copyright terms: Public domain | W3C validator |