| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
| 6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
| 7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
| 8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nd 801 sbcrext 3820 rmob 3837 elpr2g 4601 oteqex 5443 epelg 5520 eqbrrdva 5813 relbrcnvg 6058 ordsucuniel 7760 ordsucun 7761 xpord2pred 8081 brtpos2 8168 eceqoveq 8752 elpmg 8773 elfi2 9305 brwdom 9460 brwdomn0 9462 rankr1c 9721 r1pwcl 9747 ttukeylem1 10407 fpwwe2lem8 10536 eltskm 10741 recmulnq 10862 clim 15403 rlim 15404 lo1o1 15441 o1lo1 15446 o1lo12 15447 rlimresb 15474 lo1eq 15477 rlimeq 15478 isercolllem2 15575 caucvgb 15589 saddisj 16378 sadadd 16380 sadass 16384 bitsshft 16388 smupvallem 16396 smumul 16406 catpropd 17617 isssc 17729 issubc 17744 funcres2b 17806 funcres2c 17812 sgrppropd 18641 mndpropd 18669 issubg3 19059 resghm2b 19148 resscntz 19247 elsymgbas 19288 odmulg 19470 dmdprd 19914 dprdw 19926 subgdmdprd 19950 lmodprop2d 20859 lssacs 20902 prmirred 21413 lindfmm 21766 lsslindf 21769 islinds3 21773 assapropd 21811 psrbaglefi 21865 cnrest2 23202 cnprest 23205 cnprest2 23206 lmss 23214 isfildlem 23773 isfcls 23925 elutop 24149 metustel 24466 blval2 24478 dscopn 24489 iscau2 25205 causs 25226 ismbf 25557 ismbfcn 25558 iblcnlem 25718 limcdif 25805 limcres 25815 limcun 25824 dvres 25840 q1peqb 26089 ulmval 26317 ulmres 26325 chpchtsum 27158 dchrisum0lem1 27455 elmade 27813 axcontlem5 28948 iswlkg 29594 issiga 34146 ismeas 34233 elcarsg 34339 cvmlift3lem4 35387 msrrcl 35608 brcolinear2 36123 topfneec 36420 bj-epelg 37133 cnpwstotbnd 37857 ismtyima 37863 ismndo2 37934 isrngo 37957 lshpkr 39236 fimgmcyc 42652 elrfi 42811 traxext 45094 climf 45746 climf2 45788 isupwlkg 48261 |
| Copyright terms: Public domain | W3C validator |