![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.21nd 802 sbcrext 3881 rmob 3898 elpr2g 4655 oteqex 5509 epelg 5589 eqbrrdva 5882 relbrcnvg 6125 ordsucuniel 7843 ordsucun 7844 xpord2pred 8168 brtpos2 8255 eceqoveq 8860 elpmg 8881 elfi2 9451 brwdom 9604 brwdomn0 9606 rankr1c 9858 r1pwcl 9884 ttukeylem1 10546 fpwwe2lem8 10675 eltskm 10880 recmulnq 11001 clim 15526 rlim 15527 lo1o1 15564 o1lo1 15569 o1lo12 15570 rlimresb 15597 lo1eq 15600 rlimeq 15601 isercolllem2 15698 caucvgb 15712 saddisj 16498 sadadd 16500 sadass 16504 bitsshft 16508 smupvallem 16516 smumul 16526 catpropd 17753 isssc 17867 issubc 17885 funcres2b 17947 funcres2c 17954 sgrppropd 18756 mndpropd 18784 issubg3 19174 resghm2b 19264 resscntz 19363 elsymgbas 19405 odmulg 19588 dmdprd 20032 dprdw 20044 subgdmdprd 20068 lmodprop2d 20938 lssacs 20982 prmirred 21502 lindfmm 21864 lsslindf 21867 islinds3 21871 assapropd 21909 psrbaglefi 21963 cnrest2 23309 cnprest 23312 cnprest2 23313 lmss 23321 isfildlem 23880 isfcls 24032 elutop 24257 metustel 24578 blval2 24590 dscopn 24601 iscau2 25324 causs 25345 ismbf 25676 ismbfcn 25677 iblcnlem 25838 limcdif 25925 limcres 25935 limcun 25944 dvres 25960 q1peqb 26209 ulmval 26437 ulmres 26445 chpchtsum 27277 dchrisum0lem1 27574 elmade 27920 axcontlem5 28997 iswlkg 29645 issiga 34092 ismeas 34179 elcarsg 34286 cvmlift3lem4 35306 msrrcl 35527 brcolinear2 36039 topfneec 36337 bj-epelg 37050 cnpwstotbnd 37783 ismtyima 37789 ismndo2 37860 isrngo 37883 lshpkr 39098 fimgmcyc 42520 elrfi 42681 traxext 44937 climf 45577 climf2 45621 isupwlkg 47980 |
Copyright terms: Public domain | W3C validator |