Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21nd 798 sbcrext 3802 rmob 3819 elpr2g 4582 oteqex 5408 epelg 5487 eqbrrdva 5767 relbrcnvg 6002 ordsucuniel 7646 ordsucun 7647 brtpos2 8019 eceqoveq 8569 elpmg 8589 elfi2 9103 brwdom 9256 brwdomn0 9258 rankr1c 9510 r1pwcl 9536 ttukeylem1 10196 fpwwe2lem8 10325 eltskm 10530 recmulnq 10651 clim 15131 rlim 15132 lo1o1 15169 o1lo1 15174 o1lo12 15175 rlimresb 15202 lo1eq 15205 rlimeq 15206 isercolllem2 15305 caucvgb 15319 saddisj 16100 sadadd 16102 sadass 16106 bitsshft 16110 smupvallem 16118 smumul 16128 catpropd 17335 isssc 17449 issubc 17466 funcres2b 17528 funcres2c 17533 mndpropd 18325 issubg3 18688 resghm2b 18767 resscntz 18853 elsymgbas 18896 odmulg 19078 dmdprd 19516 dprdw 19528 subgdmdprd 19552 lmodprop2d 20100 lssacs 20144 prmirred 20608 lindfmm 20944 lsslindf 20947 islinds3 20951 assapropd 20986 psrbaglefi 21045 psrbaglefiOLD 21046 cnrest2 22345 cnprest 22348 cnprest2 22349 lmss 22357 isfildlem 22916 isfcls 23068 elutop 23293 metustel 23612 blval2 23624 dscopn 23635 iscau2 24346 causs 24367 ismbf 24697 ismbfcn 24698 iblcnlem 24858 limcdif 24945 limcres 24955 limcun 24964 dvres 24980 q1peqb 25224 ulmval 25444 ulmres 25452 chpchtsum 26272 dchrisum0lem1 26569 axcontlem5 27239 iswlkg 27883 issiga 31980 ismeas 32067 elcarsg 32172 cvmlift3lem4 33184 msrrcl 33405 xpord2pred 33719 elmade 33978 brcolinear2 34287 topfneec 34471 bj-epelg 35166 cnpwstotbnd 35882 ismtyima 35888 ismndo2 35959 isrngo 35982 lshpkr 37058 elrfi 40432 climf 43053 climf2 43097 isupwlkg 45187 |
Copyright terms: Public domain | W3C validator |