![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.21nd 801 sbcrext 3895 rmob 3912 elpr2g 4673 oteqex 5519 epelg 5600 eqbrrdva 5894 relbrcnvg 6135 ordsucuniel 7860 ordsucun 7861 xpord2pred 8186 brtpos2 8273 eceqoveq 8880 elpmg 8901 elfi2 9483 brwdom 9636 brwdomn0 9638 rankr1c 9890 r1pwcl 9916 ttukeylem1 10578 fpwwe2lem8 10707 eltskm 10912 recmulnq 11033 clim 15540 rlim 15541 lo1o1 15578 o1lo1 15583 o1lo12 15584 rlimresb 15611 lo1eq 15614 rlimeq 15615 isercolllem2 15714 caucvgb 15728 saddisj 16511 sadadd 16513 sadass 16517 bitsshft 16521 smupvallem 16529 smumul 16539 catpropd 17767 isssc 17881 issubc 17899 funcres2b 17961 funcres2c 17968 sgrppropd 18769 mndpropd 18797 issubg3 19184 resghm2b 19274 resscntz 19373 elsymgbas 19415 odmulg 19598 dmdprd 20042 dprdw 20054 subgdmdprd 20078 lmodprop2d 20944 lssacs 20988 prmirred 21508 lindfmm 21870 lsslindf 21873 islinds3 21877 assapropd 21915 psrbaglefi 21969 cnrest2 23315 cnprest 23318 cnprest2 23319 lmss 23327 isfildlem 23886 isfcls 24038 elutop 24263 metustel 24584 blval2 24596 dscopn 24607 iscau2 25330 causs 25351 ismbf 25682 ismbfcn 25683 iblcnlem 25844 limcdif 25931 limcres 25941 limcun 25950 dvres 25966 q1peqb 26215 ulmval 26441 ulmres 26449 chpchtsum 27281 dchrisum0lem1 27578 elmade 27924 axcontlem5 29001 iswlkg 29649 issiga 34076 ismeas 34163 elcarsg 34270 cvmlift3lem4 35290 msrrcl 35511 brcolinear2 36022 topfneec 36321 bj-epelg 37034 cnpwstotbnd 37757 ismtyima 37763 ismndo2 37834 isrngo 37857 lshpkr 39073 fimgmcyc 42489 elrfi 42650 traxext 44910 climf 45543 climf2 45587 isupwlkg 47860 |
Copyright terms: Public domain | W3C validator |