![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 375 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21nd 801 sbcrext 3868 rmob 3885 elpr2g 4653 oteqex 5501 epelg 5582 eqbrrdva 5870 relbrcnvg 6105 ordsucuniel 7812 ordsucun 7813 xpord2pred 8131 brtpos2 8217 eceqoveq 8816 elpmg 8837 elfi2 9409 brwdom 9562 brwdomn0 9564 rankr1c 9816 r1pwcl 9842 ttukeylem1 10504 fpwwe2lem8 10633 eltskm 10838 recmulnq 10959 clim 15438 rlim 15439 lo1o1 15476 o1lo1 15481 o1lo12 15482 rlimresb 15509 lo1eq 15512 rlimeq 15513 isercolllem2 15612 caucvgb 15626 saddisj 16406 sadadd 16408 sadass 16412 bitsshft 16416 smupvallem 16424 smumul 16434 catpropd 17653 isssc 17767 issubc 17785 funcres2b 17847 funcres2c 17852 sgrppropd 18622 mndpropd 18650 issubg3 19024 resghm2b 19110 resscntz 19197 elsymgbas 19241 odmulg 19424 dmdprd 19868 dprdw 19880 subgdmdprd 19904 lmodprop2d 20534 lssacs 20578 prmirred 21044 lindfmm 21382 lsslindf 21385 islinds3 21389 assapropd 21426 psrbaglefi 21485 psrbaglefiOLD 21486 cnrest2 22790 cnprest 22793 cnprest2 22794 lmss 22802 isfildlem 23361 isfcls 23513 elutop 23738 metustel 24059 blval2 24071 dscopn 24082 iscau2 24794 causs 24815 ismbf 25145 ismbfcn 25146 iblcnlem 25306 limcdif 25393 limcres 25403 limcun 25412 dvres 25428 q1peqb 25672 ulmval 25892 ulmres 25900 chpchtsum 26722 dchrisum0lem1 27019 elmade 27362 axcontlem5 28226 iswlkg 28870 issiga 33110 ismeas 33197 elcarsg 33304 cvmlift3lem4 34313 msrrcl 34534 brcolinear2 35030 topfneec 35240 bj-epelg 35949 cnpwstotbnd 36665 ismtyima 36671 ismndo2 36742 isrngo 36765 lshpkr 37987 elrfi 41432 climf 44338 climf2 44382 isupwlkg 46515 |
Copyright terms: Public domain | W3C validator |