Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 375 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21nd 799 sbcrext 3807 rmob 3824 elpr2g 4586 oteqex 5415 epelg 5497 eqbrrdva 5781 relbrcnvg 6016 ordsucuniel 7680 ordsucun 7681 brtpos2 8057 eceqoveq 8620 elpmg 8640 elfi2 9182 brwdom 9335 brwdomn0 9337 rankr1c 9588 r1pwcl 9614 ttukeylem1 10274 fpwwe2lem8 10403 eltskm 10608 recmulnq 10729 clim 15212 rlim 15213 lo1o1 15250 o1lo1 15255 o1lo12 15256 rlimresb 15283 lo1eq 15286 rlimeq 15287 isercolllem2 15386 caucvgb 15400 saddisj 16181 sadadd 16183 sadass 16187 bitsshft 16191 smupvallem 16199 smumul 16209 catpropd 17427 isssc 17541 issubc 17559 funcres2b 17621 funcres2c 17626 mndpropd 18419 issubg3 18782 resghm2b 18861 resscntz 18947 elsymgbas 18990 odmulg 19172 dmdprd 19610 dprdw 19622 subgdmdprd 19646 lmodprop2d 20194 lssacs 20238 prmirred 20705 lindfmm 21043 lsslindf 21046 islinds3 21050 assapropd 21085 psrbaglefi 21144 psrbaglefiOLD 21145 cnrest2 22446 cnprest 22449 cnprest2 22450 lmss 22458 isfildlem 23017 isfcls 23169 elutop 23394 metustel 23715 blval2 23727 dscopn 23738 iscau2 24450 causs 24471 ismbf 24801 ismbfcn 24802 iblcnlem 24962 limcdif 25049 limcres 25059 limcun 25068 dvres 25084 q1peqb 25328 ulmval 25548 ulmres 25556 chpchtsum 26376 dchrisum0lem1 26673 axcontlem5 27345 iswlkg 27989 issiga 32089 ismeas 32176 elcarsg 32281 cvmlift3lem4 33293 msrrcl 33514 xpord2pred 33801 elmade 34060 brcolinear2 34369 topfneec 34553 bj-epelg 35248 cnpwstotbnd 35964 ismtyima 35970 ismndo2 36041 isrngo 36064 lshpkr 37138 elrfi 40523 climf 43170 climf2 43214 isupwlkg 45310 |
Copyright terms: Public domain | W3C validator |