| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
| 6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
| 7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
| 8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nd 801 sbcrext 3848 rmob 3865 elpr2g 4627 oteqex 5475 epelg 5554 eqbrrdva 5849 relbrcnvg 6092 ordsucuniel 7816 ordsucun 7817 xpord2pred 8142 brtpos2 8229 eceqoveq 8834 elpmg 8855 elfi2 9424 brwdom 9579 brwdomn0 9581 rankr1c 9833 r1pwcl 9859 ttukeylem1 10521 fpwwe2lem8 10650 eltskm 10855 recmulnq 10976 clim 15508 rlim 15509 lo1o1 15546 o1lo1 15551 o1lo12 15552 rlimresb 15579 lo1eq 15582 rlimeq 15583 isercolllem2 15680 caucvgb 15694 saddisj 16482 sadadd 16484 sadass 16488 bitsshft 16492 smupvallem 16500 smumul 16510 catpropd 17719 isssc 17831 issubc 17846 funcres2b 17908 funcres2c 17914 sgrppropd 18707 mndpropd 18735 issubg3 19125 resghm2b 19215 resscntz 19314 elsymgbas 19353 odmulg 19535 dmdprd 19979 dprdw 19991 subgdmdprd 20015 lmodprop2d 20879 lssacs 20922 prmirred 21433 lindfmm 21785 lsslindf 21788 islinds3 21792 assapropd 21830 psrbaglefi 21884 cnrest2 23222 cnprest 23225 cnprest2 23226 lmss 23234 isfildlem 23793 isfcls 23945 elutop 24170 metustel 24487 blval2 24499 dscopn 24510 iscau2 25227 causs 25248 ismbf 25579 ismbfcn 25580 iblcnlem 25740 limcdif 25827 limcres 25837 limcun 25846 dvres 25862 q1peqb 26111 ulmval 26339 ulmres 26347 chpchtsum 27180 dchrisum0lem1 27477 elmade 27823 axcontlem5 28893 iswlkg 29539 issiga 34089 ismeas 34176 elcarsg 34283 cvmlift3lem4 35290 msrrcl 35511 brcolinear2 36022 topfneec 36319 bj-epelg 37032 cnpwstotbnd 37767 ismtyima 37773 ismndo2 37844 isrngo 37867 lshpkr 39081 fimgmcyc 42504 elrfi 42664 traxext 44950 climf 45599 climf2 45643 isupwlkg 48060 |
| Copyright terms: Public domain | W3C validator |