| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
| 6 | pm5.21im 374 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
| 7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
| 8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.21nd 801 sbcrext 3827 rmob 3844 elpr2g 4605 oteqex 5447 epelg 5524 eqbrrdva 5816 relbrcnvg 6060 ordsucuniel 7763 ordsucun 7764 xpord2pred 8085 brtpos2 8172 eceqoveq 8756 elpmg 8777 elfi2 9323 brwdom 9478 brwdomn0 9480 rankr1c 9736 r1pwcl 9762 ttukeylem1 10422 fpwwe2lem8 10551 eltskm 10756 recmulnq 10877 clim 15419 rlim 15420 lo1o1 15457 o1lo1 15462 o1lo12 15463 rlimresb 15490 lo1eq 15493 rlimeq 15494 isercolllem2 15591 caucvgb 15605 saddisj 16394 sadadd 16396 sadass 16400 bitsshft 16404 smupvallem 16412 smumul 16422 catpropd 17633 isssc 17745 issubc 17760 funcres2b 17822 funcres2c 17828 sgrppropd 18623 mndpropd 18651 issubg3 19041 resghm2b 19131 resscntz 19230 elsymgbas 19271 odmulg 19453 dmdprd 19897 dprdw 19909 subgdmdprd 19933 lmodprop2d 20845 lssacs 20888 prmirred 21399 lindfmm 21752 lsslindf 21755 islinds3 21759 assapropd 21797 psrbaglefi 21851 cnrest2 23189 cnprest 23192 cnprest2 23193 lmss 23201 isfildlem 23760 isfcls 23912 elutop 24137 metustel 24454 blval2 24466 dscopn 24477 iscau2 25193 causs 25214 ismbf 25545 ismbfcn 25546 iblcnlem 25706 limcdif 25793 limcres 25803 limcun 25812 dvres 25828 q1peqb 26077 ulmval 26305 ulmres 26313 chpchtsum 27146 dchrisum0lem1 27443 elmade 27799 axcontlem5 28931 iswlkg 29577 issiga 34078 ismeas 34165 elcarsg 34272 cvmlift3lem4 35294 msrrcl 35515 brcolinear2 36031 topfneec 36328 bj-epelg 37041 cnpwstotbnd 37776 ismtyima 37782 ismndo2 37853 isrngo 37876 lshpkr 39095 fimgmcyc 42507 elrfi 42667 traxext 44951 climf 45604 climf2 45648 isupwlkg 48122 |
| Copyright terms: Public domain | W3C validator |