![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21ndd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.3 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | pm5.21ndd.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜃)) |
6 | pm5.21im 373 | . . 3 ⊢ (¬ 𝜒 → (¬ 𝜃 → (𝜒 ↔ 𝜃))) | |
7 | 3, 5, 6 | syl6c 70 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ↔ 𝜃))) |
8 | 1, 7 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.21nd 798 sbcrext 3866 rmob 3883 elpr2g 4651 oteqex 5499 epelg 5580 eqbrrdva 5868 relbrcnvg 6103 ordsucuniel 7814 ordsucun 7815 xpord2pred 8133 brtpos2 8219 eceqoveq 8818 elpmg 8839 elfi2 9411 brwdom 9564 brwdomn0 9566 rankr1c 9818 r1pwcl 9844 ttukeylem1 10506 fpwwe2lem8 10635 eltskm 10840 recmulnq 10961 clim 15442 rlim 15443 lo1o1 15480 o1lo1 15485 o1lo12 15486 rlimresb 15513 lo1eq 15516 rlimeq 15517 isercolllem2 15616 caucvgb 15630 saddisj 16410 sadadd 16412 sadass 16416 bitsshft 16420 smupvallem 16428 smumul 16438 catpropd 17657 isssc 17771 issubc 17789 funcres2b 17851 funcres2c 17856 sgrppropd 18656 mndpropd 18684 issubg3 19060 resghm2b 19148 resscntz 19238 elsymgbas 19282 odmulg 19465 dmdprd 19909 dprdw 19921 subgdmdprd 19945 lmodprop2d 20678 lssacs 20722 prmirred 21245 lindfmm 21601 lsslindf 21604 islinds3 21608 assapropd 21645 psrbaglefi 21704 psrbaglefiOLD 21705 cnrest2 23010 cnprest 23013 cnprest2 23014 lmss 23022 isfildlem 23581 isfcls 23733 elutop 23958 metustel 24279 blval2 24291 dscopn 24302 iscau2 25025 causs 25046 ismbf 25377 ismbfcn 25378 iblcnlem 25538 limcdif 25625 limcres 25635 limcun 25644 dvres 25660 q1peqb 25907 ulmval 26128 ulmres 26136 chpchtsum 26958 dchrisum0lem1 27255 elmade 27599 axcontlem5 28493 iswlkg 29137 issiga 33408 ismeas 33495 elcarsg 33602 cvmlift3lem4 34611 msrrcl 34832 brcolinear2 35334 topfneec 35543 bj-epelg 36252 cnpwstotbnd 36968 ismtyima 36974 ismndo2 37045 isrngo 37068 lshpkr 38290 elrfi 41734 climf 44636 climf2 44680 isupwlkg 46813 |
Copyright terms: Public domain | W3C validator |