MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0w Structured version   Visualization version   GIF version

Theorem ab0w 4313
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 4314 using implicit substitution, which requires fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024.)
Hypothesis
Ref Expression
ab0w.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
ab0w ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ab0w
StepHypRef Expression
1 dfnul4 4264 . . 3 ∅ = {𝑥 ∣ ⊥}
21eqeq2i 2749 . 2 ({𝑥𝜑} = ∅ ↔ {𝑥𝜑} = {𝑥 ∣ ⊥})
3 dfcleq 2729 . . . 4 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}))
4 df-clab 2714 . . . . . . . 8 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
5 ab0w.1 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜓))
65sbievw 2093 . . . . . . . 8 ([𝑦 / 𝑥]𝜑𝜓)
74, 6bitri 275 . . . . . . 7 (𝑦 ∈ {𝑥𝜑} ↔ 𝜓)
87bibi1i 339 . . . . . 6 ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝜓𝑦 ∈ {𝑥 ∣ ⊥}))
9 bicom 221 . . . . . 6 ((𝜓𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓))
108, 9bitri 275 . . . . 5 ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓))
1110albii 1819 . . . 4 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓))
123, 11bitri 275 . . 3 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓))
13 df-clab 2714 . . . . . . 7 (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥)
14 sbv 2089 . . . . . . 7 ([𝑦 / 𝑥]⊥ ↔ ⊥)
1513, 14bitri 275 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ⊥} ↔ ⊥)
1615bibi1i 339 . . . . 5 ((𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ (⊥ ↔ 𝜓))
1716albii 1819 . . . 4 (∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ ∀𝑦(⊥ ↔ 𝜓))
18 falim 1556 . . . . . . 7 (⊥ → (𝜓 → ¬ 𝜓))
19 idd 24 . . . . . . 7 (¬ ⊥ → (¬ 𝜓 → ¬ 𝜓))
2018, 19bija 382 . . . . . 6 ((⊥ ↔ 𝜓) → ¬ 𝜓)
21 falim 1556 . . . . . . 7 (⊥ → 𝜓)
22 id 22 . . . . . . 7 (𝜓𝜓)
2321, 22pm5.21ni 379 . . . . . 6 𝜓 → (⊥ ↔ 𝜓))
2420, 23impbii 208 . . . . 5 ((⊥ ↔ 𝜓) ↔ ¬ 𝜓)
2524albii 1819 . . . 4 (∀𝑦(⊥ ↔ 𝜓) ↔ ∀𝑦 ¬ 𝜓)
2617, 25bitri 275 . . 3 (∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ ∀𝑦 ¬ 𝜓)
2712, 26bitri 275 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦 ¬ 𝜓)
282, 27bitri 275 1 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537   = wceq 1539  wfal 1551  [wsb 2065  wcel 2104  {cab 2713  c0 4262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-dif 3895  df-nul 4263
This theorem is referenced by:  rabeq0w  4323  0mpo0  7390  fsetdmprc0  8674
  Copyright terms: Public domain W3C validator