Proof of Theorem ab0w
Step | Hyp | Ref
| Expression |
1 | | dfnul4 4264 |
. . 3
⊢ ∅ =
{𝑥 ∣
⊥} |
2 | 1 | eqeq2i 2749 |
. 2
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥}) |
3 | | dfcleq 2729 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
4 | | df-clab 2714 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) |
5 | | ab0w.1 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
6 | 5 | sbievw 2093 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
7 | 4, 6 | bitri 275 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
8 | 7 | bibi1i 339 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
9 | | bicom 221 |
. . . . . 6
⊢ ((𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
10 | 8, 9 | bitri 275 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
11 | 10 | albii 1819 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
12 | 3, 11 | bitri 275 |
. . 3
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
13 | | df-clab 2714 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥) |
14 | | sbv 2089 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) |
15 | 13, 14 | bitri 275 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔
⊥) |
16 | 15 | bibi1i 339 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ (⊥ ↔ 𝜓)) |
17 | 16 | albii 1819 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ ∀𝑦(⊥ ↔ 𝜓)) |
18 | | falim 1556 |
. . . . . . 7
⊢ (⊥
→ (𝜓 → ¬ 𝜓)) |
19 | | idd 24 |
. . . . . . 7
⊢ (¬
⊥ → (¬ 𝜓 →
¬ 𝜓)) |
20 | 18, 19 | bija 382 |
. . . . . 6
⊢ ((⊥
↔ 𝜓) → ¬ 𝜓) |
21 | | falim 1556 |
. . . . . . 7
⊢ (⊥
→ 𝜓) |
22 | | id 22 |
. . . . . . 7
⊢ (𝜓 → 𝜓) |
23 | 21, 22 | pm5.21ni 379 |
. . . . . 6
⊢ (¬
𝜓 → (⊥ ↔ 𝜓)) |
24 | 20, 23 | impbii 208 |
. . . . 5
⊢ ((⊥
↔ 𝜓) ↔ ¬ 𝜓) |
25 | 24 | albii 1819 |
. . . 4
⊢
(∀𝑦(⊥
↔ 𝜓) ↔
∀𝑦 ¬ 𝜓) |
26 | 17, 25 | bitri 275 |
. . 3
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ ∀𝑦 ¬ 𝜓) |
27 | 12, 26 | bitri 275 |
. 2
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦 ¬ 𝜓) |
28 | 2, 27 | bitri 275 |
1
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓) |