Proof of Theorem ab0w
| Step | Hyp | Ref
| Expression |
| 1 | | dfnul4 4315 |
. . 3
⊢ ∅ =
{𝑥 ∣
⊥} |
| 2 | 1 | eqeq2i 2749 |
. 2
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥}) |
| 3 | | dfcleq 2729 |
. . . 4
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
| 4 | | df-clab 2715 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) |
| 5 | | ab0w.1 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 6 | 5 | sbievw 2094 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 7 | 4, 6 | bitri 275 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 8 | 7 | bibi1i 338 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
| 9 | | bicom 222 |
. . . . . 6
⊢ ((𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
| 10 | 8, 9 | bitri 275 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
| 11 | 10 | albii 1819 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
| 12 | 3, 11 | bitri 275 |
. . 3
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓)) |
| 13 | | df-clab 2715 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥) |
| 14 | | sbv 2089 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) |
| 15 | 13, 14 | bitri 275 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔
⊥) |
| 16 | 15 | bibi1i 338 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ (⊥ ↔ 𝜓)) |
| 17 | 16 | albii 1819 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ ∀𝑦(⊥ ↔ 𝜓)) |
| 18 | | falim 1557 |
. . . . . . 7
⊢ (⊥
→ (𝜓 → ¬ 𝜓)) |
| 19 | | idd 24 |
. . . . . . 7
⊢ (¬
⊥ → (¬ 𝜓 →
¬ 𝜓)) |
| 20 | 18, 19 | bija 380 |
. . . . . 6
⊢ ((⊥
↔ 𝜓) → ¬ 𝜓) |
| 21 | | falim 1557 |
. . . . . . 7
⊢ (⊥
→ 𝜓) |
| 22 | | id 22 |
. . . . . . 7
⊢ (𝜓 → 𝜓) |
| 23 | 21, 22 | pm5.21ni 377 |
. . . . . 6
⊢ (¬
𝜓 → (⊥ ↔ 𝜓)) |
| 24 | 20, 23 | impbii 209 |
. . . . 5
⊢ ((⊥
↔ 𝜓) ↔ ¬ 𝜓) |
| 25 | 24 | albii 1819 |
. . . 4
⊢
(∀𝑦(⊥
↔ 𝜓) ↔
∀𝑦 ¬ 𝜓) |
| 26 | 17, 25 | bitri 275 |
. . 3
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ ⊥} ↔ 𝜓) ↔ ∀𝑦 ¬ 𝜓) |
| 27 | 12, 26 | bitri 275 |
. 2
⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦 ¬ 𝜓) |
| 28 | 2, 27 | bitri 275 |
1
⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓) |