| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab0w | Structured version Visualization version GIF version | ||
| Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 4327 using implicit substitution, which requires fewer axioms. (Contributed by GG, 3-Oct-2024.) |
| Ref | Expression |
|---|---|
| ab0w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ab0w | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnul4 4282 | . . 3 ⊢ ∅ = {𝑥 ∣ ⊥} | |
| 2 | 1 | eqeq2i 2744 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥}) |
| 3 | df-clab 2710 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥) | |
| 4 | sbv 2091 | . . . . . 6 ⊢ ([𝑦 / 𝑥]⊥ ↔ ⊥) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ ⊥} ↔ ⊥) |
| 6 | 5 | bibi2i 337 | . . . 4 ⊢ ((𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝜓 ↔ ⊥)) |
| 7 | 6 | albii 1820 | . . 3 ⊢ (∀𝑦(𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑦(𝜓 ↔ ⊥)) |
| 8 | ab0w.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | eqabcbw 2805 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝜓 ↔ 𝑦 ∈ {𝑥 ∣ ⊥})) |
| 10 | nbfal 1556 | . . . 4 ⊢ (¬ 𝜓 ↔ (𝜓 ↔ ⊥)) | |
| 11 | 10 | albii 1820 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ∀𝑦(𝜓 ↔ ⊥)) |
| 12 | 7, 9, 11 | 3bitr4i 303 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦 ¬ 𝜓) |
| 13 | 2, 12 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ⊥wfal 1553 [wsb 2067 ∈ wcel 2111 {cab 2709 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: ab0orv 4330 rabeq0w 4334 relimasn 6033 0mpo0 7429 fsetdmprc0 8779 |
| Copyright terms: Public domain | W3C validator |