MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0w Structured version   Visualization version   GIF version

Theorem ab0w 4326
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 4327 using implicit substitution, which requires fewer axioms. (Contributed by GG, 3-Oct-2024.)
Hypothesis
Ref Expression
ab0w.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
ab0w ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ab0w
StepHypRef Expression
1 dfnul4 4282 . . 3 ∅ = {𝑥 ∣ ⊥}
21eqeq2i 2744 . 2 ({𝑥𝜑} = ∅ ↔ {𝑥𝜑} = {𝑥 ∣ ⊥})
3 df-clab 2710 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥)
4 sbv 2091 . . . . . 6 ([𝑦 / 𝑥]⊥ ↔ ⊥)
53, 4bitri 275 . . . . 5 (𝑦 ∈ {𝑥 ∣ ⊥} ↔ ⊥)
65bibi2i 337 . . . 4 ((𝜓𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (𝜓 ↔ ⊥))
76albii 1820 . . 3 (∀𝑦(𝜓𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑦(𝜓 ↔ ⊥))
8 ab0w.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
98eqabcbw 2805 . . 3 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝜓𝑦 ∈ {𝑥 ∣ ⊥}))
10 nbfal 1556 . . . 4 𝜓 ↔ (𝜓 ↔ ⊥))
1110albii 1820 . . 3 (∀𝑦 ¬ 𝜓 ↔ ∀𝑦(𝜓 ↔ ⊥))
127, 9, 113bitr4i 303 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦 ¬ 𝜓)
132, 12bitri 275 1 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539   = wceq 1541  wfal 1553  [wsb 2067  wcel 2111  {cab 2709  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-dif 3900  df-nul 4281
This theorem is referenced by:  ab0orv  4330  rabeq0w  4334  relimasn  6033  0mpo0  7429  fsetdmprc0  8779
  Copyright terms: Public domain W3C validator