MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprm Structured version   Visualization version   GIF version

Theorem 2lgsoddprm 25992
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 4103 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2lgs 25983 . . 3 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
31, 2syl 17 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
4 simpl 485 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = 1)
5 eqcom 2828 . . . . . . . . 9 (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1)
65a1i 11 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1))
7 nnoddn2prm 16148 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
8 nnz 12005 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
98anim1i 616 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
107, 9syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
11 sqoddm1div8z 15703 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
1210, 11syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
13 m1exp1 15727 . . . . . . . . 9 ((((𝑃↑2) − 1) / 8) ∈ ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
1412, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
15 2lgsoddprmlem4 25991 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
1610, 15syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
176, 14, 163bitrd 307 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1, 7}))
1817biimparc 482 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
1918adantl 484 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
204, 19eqtrd 2856 . . . 4 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
2120exp32 423 . . 3 ((2 /L 𝑃) = 1 → ((𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
22 2z 12015 . . . . . 6 2 ∈ ℤ
23 prmz 16019 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
241, 23syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
25 lgscl1 25896 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
2622, 24, 25sylancr 589 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ∈ {-1, 0, 1})
27 ovex 7189 . . . . . . 7 (2 /L 𝑃) ∈ V
2827eltp 4626 . . . . . 6 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
29 simpl 485 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1)
3016notbid 320 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1, 7}))
3130biimpar 480 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8))
32 m1expo 15726 . . . . . . . . . . . . 13 (((((𝑃↑2) − 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3312, 31, 32syl2an2r 683 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3433eqcomd 2827 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3534adantl 484 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3629, 35eqtrd 2856 . . . . . . . . 9 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
3736a1d 25 . . . . . . . 8 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
3837exp32 423 . . . . . . 7 ((2 /L 𝑃) = -1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
39 eldifsn 4719 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
40 simpr 487 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
4140necomd 3071 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
4239, 41sylbi 219 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
43 2prm 16036 . . . . . . . . . . 11 2 ∈ ℙ
44 prmrp 16056 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4543, 1, 44sylancr 589 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4642, 45mpbird 259 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
47 lgsne0 25911 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4822, 24, 47sylancr 589 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4946, 48mpbird 259 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ≠ 0)
50 eqneqall 3027 . . . . . . . 8 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5149, 50syl5 34 . . . . . . 7 ((2 /L 𝑃) = 0 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
52 pm2.24 124 . . . . . . . 8 ((2 /L 𝑃) = 1 → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
53522a1d 26 . . . . . . 7 ((2 /L 𝑃) = 1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5438, 51, 533jaoi 1423 . . . . . 6 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5528, 54sylbi 219 . . . . 5 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5626, 55mpcom 38 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5756com13 88 . . 3 (¬ (2 /L 𝑃) = 1 → (¬ (𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5821, 57bija 384 . 2 (((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}) → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
593, 58mpcom 38 1 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1537  wcel 2114  wne 3016  cdif 3933  {csn 4567  {cpr 4569  {ctp 4571   class class class wbr 5066  (class class class)co 7156  0cc0 10537  1c1 10538  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  7c7 11698  8c8 11699  cz 11982   mod cmo 13238  cexp 13430  cdvds 15607   gcd cgcd 15843  cprime 16015   /L clgs 25870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608  df-gcd 15844  df-prm 16016  df-phi 16103  df-pc 16174  df-lgs 25871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator