Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprm Structured version   Visualization version   GIF version

Theorem 2lgsoddprm 25979
 Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 4079 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2lgs 25970 . . 3 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
31, 2syl 17 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
4 simpl 486 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = 1)
5 eqcom 2828 . . . . . . . . 9 (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1)
65a1i 11 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1))
7 nnoddn2prm 16125 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
8 nnz 11982 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
98anim1i 617 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
107, 9syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
11 sqoddm1div8z 15682 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
1210, 11syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
13 m1exp1 15704 . . . . . . . . 9 ((((𝑃↑2) − 1) / 8) ∈ ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
1412, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
15 2lgsoddprmlem4 25978 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
1610, 15syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
176, 14, 163bitrd 308 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1, 7}))
1817biimparc 483 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
1918adantl 485 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
204, 19eqtrd 2856 . . . 4 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
2120exp32 424 . . 3 ((2 /L 𝑃) = 1 → ((𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
22 2z 11992 . . . . . 6 2 ∈ ℤ
23 prmz 15996 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
241, 23syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
25 lgscl1 25883 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
2622, 24, 25sylancr 590 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ∈ {-1, 0, 1})
27 ovex 7163 . . . . . . 7 (2 /L 𝑃) ∈ V
2827eltp 4599 . . . . . 6 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
29 simpl 486 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1)
3016notbid 321 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1, 7}))
3130biimpar 481 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8))
32 m1expo 15703 . . . . . . . . . . . . 13 (((((𝑃↑2) − 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3312, 31, 32syl2an2r 684 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3433eqcomd 2827 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3534adantl 485 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3629, 35eqtrd 2856 . . . . . . . . 9 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
3736a1d 25 . . . . . . . 8 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
3837exp32 424 . . . . . . 7 ((2 /L 𝑃) = -1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
39 eldifsn 4692 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
40 simpr 488 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
4140necomd 3062 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
4239, 41sylbi 220 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
43 2prm 16013 . . . . . . . . . . 11 2 ∈ ℙ
44 prmrp 16033 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4543, 1, 44sylancr 590 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4642, 45mpbird 260 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
47 lgsne0 25898 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4822, 24, 47sylancr 590 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4946, 48mpbird 260 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ≠ 0)
50 eqneqall 3018 . . . . . . . 8 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5149, 50syl5 34 . . . . . . 7 ((2 /L 𝑃) = 0 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
52 pm2.24 124 . . . . . . . 8 ((2 /L 𝑃) = 1 → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
53522a1d 26 . . . . . . 7 ((2 /L 𝑃) = 1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5438, 51, 533jaoi 1424 . . . . . 6 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5528, 54sylbi 220 . . . . 5 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5626, 55mpcom 38 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5756com13 88 . . 3 (¬ (2 /L 𝑃) = 1 → (¬ (𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5821, 57bija 385 . 2 (((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}) → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
593, 58mpcom 38 1 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   = wceq 1538   ∈ wcel 2115   ≠ wne 3007   ∖ cdif 3907  {csn 4540  {cpr 4542  {ctp 4544   class class class wbr 5039  (class class class)co 7130  0cc0 10514  1c1 10515   − cmin 10847  -cneg 10848   / cdiv 11274  ℕcn 11615  2c2 11670  7c7 11675  8c8 11676  ℤcz 11959   mod cmo 13220  ↑cexp 13413   ∥ cdvds 15586   gcd cgcd 15820  ℙcprime 15992   /L clgs 25857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-ioo 12720  df-ico 12722  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-prod 15239  df-dvds 15587  df-gcd 15821  df-prm 15993  df-phi 16080  df-pc 16151  df-lgs 25858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator