MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprm Structured version   Visualization version   GIF version

Theorem 2lgsoddprm 27360
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 4090 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2lgs 27351 . . 3 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
31, 2syl 17 . 2 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
4 simpl 482 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = 1)
5 eqcom 2736 . . . . . . . . 9 (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1)
65a1i 11 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (-1↑(((𝑃↑2) − 1) / 8)) = 1))
7 nnoddn2prm 16758 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
8 nnz 12526 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
98anim1i 615 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
107, 9syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃))
11 sqoddm1div8z 16300 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
1210, 11syl 17 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (((𝑃↑2) − 1) / 8) ∈ ℤ)
13 m1exp1 16322 . . . . . . . . 9 ((((𝑃↑2) − 1) / 8) ∈ ℤ → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
1412, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → ((-1↑(((𝑃↑2) − 1) / 8)) = 1 ↔ 2 ∥ (((𝑃↑2) − 1) / 8)))
15 2lgsoddprmlem4 27359 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
1610, 15syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 ∥ (((𝑃↑2) − 1) / 8) ↔ (𝑃 mod 8) ∈ {1, 7}))
176, 14, 163bitrd 305 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (1 = (-1↑(((𝑃↑2) − 1) / 8)) ↔ (𝑃 mod 8) ∈ {1, 7}))
1817biimparc 479 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
1918adantl 481 . . . . 5 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → 1 = (-1↑(((𝑃↑2) − 1) / 8)))
204, 19eqtrd 2764 . . . 4 (((2 /L 𝑃) = 1 ∧ ((𝑃 mod 8) ∈ {1, 7} ∧ 𝑃 ∈ (ℙ ∖ {2}))) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
2120exp32 420 . . 3 ((2 /L 𝑃) = 1 → ((𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
22 2z 12541 . . . . . 6 2 ∈ ℤ
23 prmz 16621 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
241, 23syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
25 lgscl1 27264 . . . . . 6 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 /L 𝑃) ∈ {-1, 0, 1})
2622, 24, 25sylancr 587 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ∈ {-1, 0, 1})
27 ovex 7402 . . . . . . 7 (2 /L 𝑃) ∈ V
2827eltp 4649 . . . . . 6 ((2 /L 𝑃) ∈ {-1, 0, 1} ↔ ((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1))
29 simpl 482 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = -1)
3016notbid 318 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (¬ 2 ∥ (((𝑃↑2) − 1) / 8) ↔ ¬ (𝑃 mod 8) ∈ {1, 7}))
3130biimpar 477 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → ¬ 2 ∥ (((𝑃↑2) − 1) / 8))
32 m1expo 16321 . . . . . . . . . . . . 13 (((((𝑃↑2) − 1) / 8) ∈ ℤ ∧ ¬ 2 ∥ (((𝑃↑2) − 1) / 8)) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3312, 31, 32syl2an2r 685 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → (-1↑(((𝑃↑2) − 1) / 8)) = -1)
3433eqcomd 2735 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7}) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3534adantl 481 . . . . . . . . . 10 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → -1 = (-1↑(((𝑃↑2) − 1) / 8)))
3629, 35eqtrd 2764 . . . . . . . . 9 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
3736a1d 25 . . . . . . . 8 (((2 /L 𝑃) = -1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ (𝑃 mod 8) ∈ {1, 7})) → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
3837exp32 420 . . . . . . 7 ((2 /L 𝑃) = -1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
39 eldifsn 4746 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
40 simpr 484 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
4140necomd 2980 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
4239, 41sylbi 217 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
43 2prm 16638 . . . . . . . . . . 11 2 ∈ ℙ
44 prmrp 16658 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4543, 1, 44sylancr 587 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4642, 45mpbird 257 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
47 lgsne0 27279 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4822, 24, 47sylancr 587 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 /L 𝑃) ≠ 0 ↔ (2 gcd 𝑃) = 1))
4946, 48mpbird 257 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) ≠ 0)
50 eqneqall 2936 . . . . . . . 8 ((2 /L 𝑃) = 0 → ((2 /L 𝑃) ≠ 0 → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5149, 50syl5 34 . . . . . . 7 ((2 /L 𝑃) = 0 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
52 pm2.24 124 . . . . . . . 8 ((2 /L 𝑃) = 1 → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
53522a1d 26 . . . . . . 7 ((2 /L 𝑃) = 1 → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5438, 51, 533jaoi 1430 . . . . . 6 (((2 /L 𝑃) = -1 ∨ (2 /L 𝑃) = 0 ∨ (2 /L 𝑃) = 1) → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5528, 54sylbi 217 . . . . 5 ((2 /L 𝑃) ∈ {-1, 0, 1} → (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))))
5626, 55mpcom 38 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (¬ (𝑃 mod 8) ∈ {1, 7} → (¬ (2 /L 𝑃) = 1 → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5756com13 88 . . 3 (¬ (2 /L 𝑃) = 1 → (¬ (𝑃 mod 8) ∈ {1, 7} → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))))
5821, 57bija 380 . 2 (((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}) → (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))))
593, 58mpcom 38 1 (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585  {cpr 4587  {ctp 4589   class class class wbr 5102  (class class class)co 7369  0cc0 11044  1c1 11045  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  7c7 12222  8c8 12223  cz 12505   mod cmo 13807  cexp 14002  cdvds 16198   gcd cgcd 16440  cprime 16617   /L clgs 27238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ioo 13286  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-pc 16784  df-lgs 27239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator