![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0frgp | Structured version Visualization version GIF version |
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
0frgp.g | ⊢ 𝐺 = (freeGrp‘∅) |
0frgp.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0frgp | ⊢ 𝐵 ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 5714 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = ( I ↾ 𝐵) | |
2 | 0ex 5028 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
3 | 0frgp.g | . . . . . . . . . . . . 13 ⊢ 𝐺 = (freeGrp‘∅) | |
4 | 3 | frgpgrp 18572 | . . . . . . . . . . . 12 ⊢ (∅ ∈ V → 𝐺 ∈ Grp) |
5 | 2, 4 | ax-mp 5 | . . . . . . . . . . 11 ⊢ 𝐺 ∈ Grp |
6 | f0 6338 | . . . . . . . . . . 11 ⊢ ∅:∅⟶𝐵 | |
7 | 0frgp.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
8 | eqid 2778 | . . . . . . . . . . . . . . . 16 ⊢ ( ~FG ‘∅) = ( ~FG ‘∅) | |
9 | eqid 2778 | . . . . . . . . . . . . . . . 16 ⊢ (varFGrp‘∅) = (varFGrp‘∅) | |
10 | 8, 9, 3, 7 | vrgpf 18578 | . . . . . . . . . . . . . . 15 ⊢ (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵) |
11 | ffn 6293 | . . . . . . . . . . . . . . 15 ⊢ ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅) | |
12 | 2, 10, 11 | mp2b 10 | . . . . . . . . . . . . . 14 ⊢ (varFGrp‘∅) Fn ∅ |
13 | fn0 6259 | . . . . . . . . . . . . . 14 ⊢ ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅) | |
14 | 12, 13 | mpbi 222 | . . . . . . . . . . . . 13 ⊢ (varFGrp‘∅) = ∅ |
15 | 14 | eqcomi 2787 | . . . . . . . . . . . 12 ⊢ ∅ = (varFGrp‘∅) |
16 | 3, 7, 15 | frgpup3 18588 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) |
17 | 5, 2, 6, 16 | mp3an 1534 | . . . . . . . . . 10 ⊢ ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
18 | reurmo 3357 | . . . . . . . . . 10 ⊢ (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) | |
19 | 17, 18 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
20 | 7 | idghm 18070 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
21 | 5, 20 | ax-mp 5 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) |
22 | tru 1606 | . . . . . . . . . 10 ⊢ ⊤ | |
23 | 21, 22 | pm3.2i 464 | . . . . . . . . 9 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
24 | eqid 2778 | . . . . . . . . . . . 12 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
25 | 24, 7 | 0ghm 18069 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺)) |
26 | 5, 5, 25 | mp2an 682 | . . . . . . . . . 10 ⊢ (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) |
27 | 26, 22 | pm3.2i 464 | . . . . . . . . 9 ⊢ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
28 | co02 5905 | . . . . . . . . . . . 12 ⊢ (𝑓 ∘ ∅) = ∅ | |
29 | 28 | bitru 1611 | . . . . . . . . . . 11 ⊢ ((𝑓 ∘ ∅) = ∅ ↔ ⊤) |
30 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
31 | 29 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = (𝐵 × {(0g‘𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
32 | 30, 31 | rmoi 3748 | . . . . . . . . 9 ⊢ ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)})) |
33 | 19, 23, 27, 32 | mp3an 1534 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)}) |
34 | fconstmpt 5413 | . . . . . . . 8 ⊢ (𝐵 × {(0g‘𝐺)}) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) | |
35 | 1, 33, 34 | 3eqtri 2806 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) |
36 | mpteqb 6562 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺))) | |
37 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐵) | |
38 | 36, 37 | mprg 3108 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺)) |
39 | 35, 38 | mpbi 222 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺) |
40 | 39 | rspec 3113 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0g‘𝐺)) |
41 | velsn 4414 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
42 | 40, 41 | sylibr 226 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {(0g‘𝐺)}) |
43 | 42 | ssriv 3825 | . . 3 ⊢ 𝐵 ⊆ {(0g‘𝐺)} |
44 | 7, 24 | grpidcl 17848 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
45 | 5, 44 | ax-mp 5 | . . . 4 ⊢ (0g‘𝐺) ∈ 𝐵 |
46 | snssi 4572 | . . . 4 ⊢ ((0g‘𝐺) ∈ 𝐵 → {(0g‘𝐺)} ⊆ 𝐵) | |
47 | 45, 46 | ax-mp 5 | . . 3 ⊢ {(0g‘𝐺)} ⊆ 𝐵 |
48 | 43, 47 | eqssi 3837 | . 2 ⊢ 𝐵 = {(0g‘𝐺)} |
49 | fvex 6461 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
50 | 49 | ensn1 8307 | . 2 ⊢ {(0g‘𝐺)} ≈ 1o |
51 | 48, 50 | eqbrtri 4909 | 1 ⊢ 𝐵 ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ⊤wtru 1602 ∈ wcel 2107 ∀wral 3090 ∃!wreu 3092 ∃*wrmo 3093 Vcvv 3398 ⊆ wss 3792 ∅c0 4141 {csn 4398 class class class wbr 4888 ↦ cmpt 4967 I cid 5262 × cxp 5355 ↾ cres 5359 ∘ ccom 5361 Fn wfn 6132 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 1oc1o 7838 ≈ cen 8240 Basecbs 16266 0gc0g 16497 Grpcgrp 17820 GrpHom cghm 18052 ~FG cefg 18514 freeGrpcfrgp 18515 varFGrpcvrgp 18516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-ec 8030 df-qs 8034 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-xnn0 11720 df-z 11734 df-dec 11851 df-uz 11998 df-fz 12649 df-fzo 12790 df-seq 13125 df-hash 13442 df-word 13606 df-lsw 13659 df-concat 13667 df-s1 13692 df-substr 13737 df-pfx 13786 df-splice 13893 df-reverse 13911 df-s2 14005 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-0g 16499 df-gsum 16500 df-imas 16565 df-qus 16566 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-mhm 17732 df-submnd 17733 df-frmd 17784 df-vrmd 17785 df-grp 17823 df-minusg 17824 df-ghm 18053 df-efg 18517 df-frgp 18518 df-vrgp 18519 |
This theorem is referenced by: frgpcyg 20328 |
Copyright terms: Public domain | W3C validator |