| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0frgp | Structured version Visualization version GIF version | ||
| Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| 0frgp.g | ⊢ 𝐺 = (freeGrp‘∅) |
| 0frgp.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| 0frgp | ⊢ 𝐵 ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5257 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
| 2 | 0frgp.g | . . . . . . . . . . . . 13 ⊢ 𝐺 = (freeGrp‘∅) | |
| 3 | 2 | frgpgrp 19676 | . . . . . . . . . . . 12 ⊢ (∅ ∈ V → 𝐺 ∈ Grp) |
| 4 | 1, 3 | ax-mp 5 | . . . . . . . . . . 11 ⊢ 𝐺 ∈ Grp |
| 5 | f0 6723 | . . . . . . . . . . 11 ⊢ ∅:∅⟶𝐵 | |
| 6 | 0frgp.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | eqid 2729 | . . . . . . . . . . . . . . . 16 ⊢ ( ~FG ‘∅) = ( ~FG ‘∅) | |
| 8 | eqid 2729 | . . . . . . . . . . . . . . . 16 ⊢ (varFGrp‘∅) = (varFGrp‘∅) | |
| 9 | 7, 8, 2, 6 | vrgpf 19682 | . . . . . . . . . . . . . . 15 ⊢ (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵) |
| 10 | ffn 6670 | . . . . . . . . . . . . . . 15 ⊢ ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅) | |
| 11 | 1, 9, 10 | mp2b 10 | . . . . . . . . . . . . . 14 ⊢ (varFGrp‘∅) Fn ∅ |
| 12 | fn0 6631 | . . . . . . . . . . . . . 14 ⊢ ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅) | |
| 13 | 11, 12 | mpbi 230 | . . . . . . . . . . . . 13 ⊢ (varFGrp‘∅) = ∅ |
| 14 | 13 | eqcomi 2738 | . . . . . . . . . . . 12 ⊢ ∅ = (varFGrp‘∅) |
| 15 | 2, 6, 14 | frgpup3 19692 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) |
| 16 | 4, 1, 5, 15 | mp3an 1463 | . . . . . . . . . 10 ⊢ ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
| 17 | reurmo 3354 | . . . . . . . . . 10 ⊢ (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
| 19 | 6 | idghm 19145 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| 20 | 4, 19 | ax-mp 5 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) |
| 21 | tru 1544 | . . . . . . . . . 10 ⊢ ⊤ | |
| 22 | 20, 21 | pm3.2i 470 | . . . . . . . . 9 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
| 23 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 24 | 23, 6 | 0ghm 19144 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺)) |
| 25 | 4, 4, 24 | mp2an 692 | . . . . . . . . . 10 ⊢ (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) |
| 26 | 25, 21 | pm3.2i 470 | . . . . . . . . 9 ⊢ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
| 27 | co02 6221 | . . . . . . . . . . . 12 ⊢ (𝑓 ∘ ∅) = ∅ | |
| 28 | 27 | bitru 1549 | . . . . . . . . . . 11 ⊢ ((𝑓 ∘ ∅) = ∅ ↔ ⊤) |
| 29 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
| 30 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = (𝐵 × {(0g‘𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
| 31 | 29, 30 | rmoi 3851 | . . . . . . . . 9 ⊢ ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)})) |
| 32 | 18, 22, 26, 31 | mp3an 1463 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)}) |
| 33 | mptresid 6011 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝑥) | |
| 34 | fconstmpt 5693 | . . . . . . . 8 ⊢ (𝐵 × {(0g‘𝐺)}) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) | |
| 35 | 32, 33, 34 | 3eqtr3i 2760 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) |
| 36 | mpteqb 6969 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺))) | |
| 37 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐵) | |
| 38 | 36, 37 | mprg 3050 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺)) |
| 39 | 35, 38 | mpbi 230 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺) |
| 40 | 39 | rspec 3226 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0g‘𝐺)) |
| 41 | velsn 4601 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
| 42 | 40, 41 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {(0g‘𝐺)}) |
| 43 | 42 | ssriv 3947 | . . 3 ⊢ 𝐵 ⊆ {(0g‘𝐺)} |
| 44 | 6, 23 | grpidcl 18879 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 45 | 4, 44 | ax-mp 5 | . . . 4 ⊢ (0g‘𝐺) ∈ 𝐵 |
| 46 | snssi 4768 | . . . 4 ⊢ ((0g‘𝐺) ∈ 𝐵 → {(0g‘𝐺)} ⊆ 𝐵) | |
| 47 | 45, 46 | ax-mp 5 | . . 3 ⊢ {(0g‘𝐺)} ⊆ 𝐵 |
| 48 | 43, 47 | eqssi 3960 | . 2 ⊢ 𝐵 = {(0g‘𝐺)} |
| 49 | fvex 6853 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
| 50 | 49 | ensn1 8969 | . 2 ⊢ {(0g‘𝐺)} ≈ 1o |
| 51 | 48, 50 | eqbrtri 5123 | 1 ⊢ 𝐵 ≈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3349 ∃*wrmo 3350 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 I cid 5525 × cxp 5629 ↾ cres 5633 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 ≈ cen 8892 Basecbs 17155 0gc0g 17378 Grpcgrp 18847 GrpHom cghm 19126 ~FG cefg 19620 freeGrpcfrgp 19621 varFGrpcvrgp 19622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-reverse 14700 df-s2 14790 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-gsum 17381 df-imas 17447 df-qus 17448 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-frmd 18758 df-vrmd 18759 df-grp 18850 df-minusg 18851 df-ghm 19127 df-efg 19623 df-frgp 19624 df-vrgp 19625 |
| This theorem is referenced by: frgpcyg 21515 |
| Copyright terms: Public domain | W3C validator |