![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0frgp | Structured version Visualization version GIF version |
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
0frgp.g | ⊢ 𝐺 = (freeGrp‘∅) |
0frgp.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0frgp | ⊢ 𝐵 ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
2 | 0frgp.g | . . . . . . . . . . . . 13 ⊢ 𝐺 = (freeGrp‘∅) | |
3 | 2 | frgpgrp 19804 | . . . . . . . . . . . 12 ⊢ (∅ ∈ V → 𝐺 ∈ Grp) |
4 | 1, 3 | ax-mp 5 | . . . . . . . . . . 11 ⊢ 𝐺 ∈ Grp |
5 | f0 6802 | . . . . . . . . . . 11 ⊢ ∅:∅⟶𝐵 | |
6 | 0frgp.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
7 | eqid 2740 | . . . . . . . . . . . . . . . 16 ⊢ ( ~FG ‘∅) = ( ~FG ‘∅) | |
8 | eqid 2740 | . . . . . . . . . . . . . . . 16 ⊢ (varFGrp‘∅) = (varFGrp‘∅) | |
9 | 7, 8, 2, 6 | vrgpf 19810 | . . . . . . . . . . . . . . 15 ⊢ (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵) |
10 | ffn 6747 | . . . . . . . . . . . . . . 15 ⊢ ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅) | |
11 | 1, 9, 10 | mp2b 10 | . . . . . . . . . . . . . 14 ⊢ (varFGrp‘∅) Fn ∅ |
12 | fn0 6711 | . . . . . . . . . . . . . 14 ⊢ ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅) | |
13 | 11, 12 | mpbi 230 | . . . . . . . . . . . . 13 ⊢ (varFGrp‘∅) = ∅ |
14 | 13 | eqcomi 2749 | . . . . . . . . . . . 12 ⊢ ∅ = (varFGrp‘∅) |
15 | 2, 6, 14 | frgpup3 19820 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) |
16 | 4, 1, 5, 15 | mp3an 1461 | . . . . . . . . . 10 ⊢ ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
17 | reurmo 3391 | . . . . . . . . . 10 ⊢ (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
19 | 6 | idghm 19271 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
20 | 4, 19 | ax-mp 5 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) |
21 | tru 1541 | . . . . . . . . . 10 ⊢ ⊤ | |
22 | 20, 21 | pm3.2i 470 | . . . . . . . . 9 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
23 | eqid 2740 | . . . . . . . . . . . 12 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
24 | 23, 6 | 0ghm 19270 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺)) |
25 | 4, 4, 24 | mp2an 691 | . . . . . . . . . 10 ⊢ (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) |
26 | 25, 21 | pm3.2i 470 | . . . . . . . . 9 ⊢ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
27 | co02 6291 | . . . . . . . . . . . 12 ⊢ (𝑓 ∘ ∅) = ∅ | |
28 | 27 | bitru 1546 | . . . . . . . . . . 11 ⊢ ((𝑓 ∘ ∅) = ∅ ↔ ⊤) |
29 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
30 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = (𝐵 × {(0g‘𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
31 | 29, 30 | rmoi 3913 | . . . . . . . . 9 ⊢ ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)})) |
32 | 18, 22, 26, 31 | mp3an 1461 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)}) |
33 | mptresid 6080 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝑥) | |
34 | fconstmpt 5762 | . . . . . . . 8 ⊢ (𝐵 × {(0g‘𝐺)}) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) | |
35 | 32, 33, 34 | 3eqtr3i 2776 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) |
36 | mpteqb 7048 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺))) | |
37 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐵) | |
38 | 36, 37 | mprg 3073 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺)) |
39 | 35, 38 | mpbi 230 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺) |
40 | 39 | rspec 3256 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0g‘𝐺)) |
41 | velsn 4664 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
42 | 40, 41 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {(0g‘𝐺)}) |
43 | 42 | ssriv 4012 | . . 3 ⊢ 𝐵 ⊆ {(0g‘𝐺)} |
44 | 6, 23 | grpidcl 19005 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
45 | 4, 44 | ax-mp 5 | . . . 4 ⊢ (0g‘𝐺) ∈ 𝐵 |
46 | snssi 4833 | . . . 4 ⊢ ((0g‘𝐺) ∈ 𝐵 → {(0g‘𝐺)} ⊆ 𝐵) | |
47 | 45, 46 | ax-mp 5 | . . 3 ⊢ {(0g‘𝐺)} ⊆ 𝐵 |
48 | 43, 47 | eqssi 4025 | . 2 ⊢ 𝐵 = {(0g‘𝐺)} |
49 | fvex 6933 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
50 | 49 | ensn1 9082 | . 2 ⊢ {(0g‘𝐺)} ≈ 1o |
51 | 48, 50 | eqbrtri 5187 | 1 ⊢ 𝐵 ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∀wral 3067 ∃!wreu 3386 ∃*wrmo 3387 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 ≈ cen 9000 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 GrpHom cghm 19252 ~FG cefg 19748 freeGrpcfrgp 19749 varFGrpcvrgp 19750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-gsum 17502 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-frmd 18884 df-vrmd 18885 df-grp 18976 df-minusg 18977 df-ghm 19253 df-efg 19751 df-frgp 19752 df-vrgp 19753 |
This theorem is referenced by: frgpcyg 21615 |
Copyright terms: Public domain | W3C validator |