| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0frgp | Structured version Visualization version GIF version | ||
| Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| 0frgp.g | ⊢ 𝐺 = (freeGrp‘∅) |
| 0frgp.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| 0frgp | ⊢ 𝐵 ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5243 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
| 2 | 0frgp.g | . . . . . . . . . . . . 13 ⊢ 𝐺 = (freeGrp‘∅) | |
| 3 | 2 | frgpgrp 19674 | . . . . . . . . . . . 12 ⊢ (∅ ∈ V → 𝐺 ∈ Grp) |
| 4 | 1, 3 | ax-mp 5 | . . . . . . . . . . 11 ⊢ 𝐺 ∈ Grp |
| 5 | f0 6704 | . . . . . . . . . . 11 ⊢ ∅:∅⟶𝐵 | |
| 6 | 0frgp.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | eqid 2731 | . . . . . . . . . . . . . . . 16 ⊢ ( ~FG ‘∅) = ( ~FG ‘∅) | |
| 8 | eqid 2731 | . . . . . . . . . . . . . . . 16 ⊢ (varFGrp‘∅) = (varFGrp‘∅) | |
| 9 | 7, 8, 2, 6 | vrgpf 19680 | . . . . . . . . . . . . . . 15 ⊢ (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵) |
| 10 | ffn 6651 | . . . . . . . . . . . . . . 15 ⊢ ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅) | |
| 11 | 1, 9, 10 | mp2b 10 | . . . . . . . . . . . . . 14 ⊢ (varFGrp‘∅) Fn ∅ |
| 12 | fn0 6612 | . . . . . . . . . . . . . 14 ⊢ ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅) | |
| 13 | 11, 12 | mpbi 230 | . . . . . . . . . . . . 13 ⊢ (varFGrp‘∅) = ∅ |
| 14 | 13 | eqcomi 2740 | . . . . . . . . . . . 12 ⊢ ∅ = (varFGrp‘∅) |
| 15 | 2, 6, 14 | frgpup3 19690 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) |
| 16 | 4, 1, 5, 15 | mp3an 1463 | . . . . . . . . . 10 ⊢ ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
| 17 | reurmo 3349 | . . . . . . . . . 10 ⊢ (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
| 19 | 6 | idghm 19143 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
| 20 | 4, 19 | ax-mp 5 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) |
| 21 | tru 1545 | . . . . . . . . . 10 ⊢ ⊤ | |
| 22 | 20, 21 | pm3.2i 470 | . . . . . . . . 9 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
| 23 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 24 | 23, 6 | 0ghm 19142 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺)) |
| 25 | 4, 4, 24 | mp2an 692 | . . . . . . . . . 10 ⊢ (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) |
| 26 | 25, 21 | pm3.2i 470 | . . . . . . . . 9 ⊢ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
| 27 | co02 6208 | . . . . . . . . . . . 12 ⊢ (𝑓 ∘ ∅) = ∅ | |
| 28 | 27 | bitru 1550 | . . . . . . . . . . 11 ⊢ ((𝑓 ∘ ∅) = ∅ ↔ ⊤) |
| 29 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
| 30 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = (𝐵 × {(0g‘𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
| 31 | 29, 30 | rmoi 3837 | . . . . . . . . 9 ⊢ ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)})) |
| 32 | 18, 22, 26, 31 | mp3an 1463 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)}) |
| 33 | mptresid 5999 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝑥) | |
| 34 | fconstmpt 5676 | . . . . . . . 8 ⊢ (𝐵 × {(0g‘𝐺)}) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) | |
| 35 | 32, 33, 34 | 3eqtr3i 2762 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) |
| 36 | mpteqb 6948 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺))) | |
| 37 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐵) | |
| 38 | 36, 37 | mprg 3053 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺)) |
| 39 | 35, 38 | mpbi 230 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺) |
| 40 | 39 | rspec 3223 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0g‘𝐺)) |
| 41 | velsn 4589 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
| 42 | 40, 41 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {(0g‘𝐺)}) |
| 43 | 42 | ssriv 3933 | . . 3 ⊢ 𝐵 ⊆ {(0g‘𝐺)} |
| 44 | 6, 23 | grpidcl 18878 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 45 | 4, 44 | ax-mp 5 | . . . 4 ⊢ (0g‘𝐺) ∈ 𝐵 |
| 46 | snssi 4757 | . . . 4 ⊢ ((0g‘𝐺) ∈ 𝐵 → {(0g‘𝐺)} ⊆ 𝐵) | |
| 47 | 45, 46 | ax-mp 5 | . . 3 ⊢ {(0g‘𝐺)} ⊆ 𝐵 |
| 48 | 43, 47 | eqssi 3946 | . 2 ⊢ 𝐵 = {(0g‘𝐺)} |
| 49 | fvex 6835 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
| 50 | 49 | ensn1 8943 | . 2 ⊢ {(0g‘𝐺)} ≈ 1o |
| 51 | 48, 50 | eqbrtri 5110 | 1 ⊢ 𝐵 ≈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 ∃*wrmo 3345 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 I cid 5508 × cxp 5612 ↾ cres 5616 ∘ ccom 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ≈ cen 8866 Basecbs 17120 0gc0g 17343 Grpcgrp 18846 GrpHom cghm 19124 ~FG cefg 19618 freeGrpcfrgp 19619 varFGrpcvrgp 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-gsum 17346 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-frmd 18757 df-vrmd 18758 df-grp 18849 df-minusg 18850 df-ghm 19125 df-efg 19621 df-frgp 19622 df-vrgp 19623 |
| This theorem is referenced by: frgpcyg 21510 |
| Copyright terms: Public domain | W3C validator |