MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0frgp Structured version   Visualization version   GIF version

Theorem 0frgp 19693
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
0frgp.g 𝐺 = (freeGrp‘∅)
0frgp.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
0frgp 𝐵 ≈ 1o

Proof of Theorem 0frgp
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5257 . . . . . . . . . . . 12 ∅ ∈ V
2 0frgp.g . . . . . . . . . . . . 13 𝐺 = (freeGrp‘∅)
32frgpgrp 19676 . . . . . . . . . . . 12 (∅ ∈ V → 𝐺 ∈ Grp)
41, 3ax-mp 5 . . . . . . . . . . 11 𝐺 ∈ Grp
5 f0 6723 . . . . . . . . . . 11 ∅:∅⟶𝐵
6 0frgp.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
7 eqid 2729 . . . . . . . . . . . . . . . 16 ( ~FG ‘∅) = ( ~FG ‘∅)
8 eqid 2729 . . . . . . . . . . . . . . . 16 (varFGrp‘∅) = (varFGrp‘∅)
97, 8, 2, 6vrgpf 19682 . . . . . . . . . . . . . . 15 (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵)
10 ffn 6670 . . . . . . . . . . . . . . 15 ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅)
111, 9, 10mp2b 10 . . . . . . . . . . . . . 14 (varFGrp‘∅) Fn ∅
12 fn0 6631 . . . . . . . . . . . . . 14 ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅)
1311, 12mpbi 230 . . . . . . . . . . . . 13 (varFGrp‘∅) = ∅
1413eqcomi 2738 . . . . . . . . . . . 12 ∅ = (varFGrp‘∅)
152, 6, 14frgpup3 19692 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅)
164, 1, 5, 15mp3an 1463 . . . . . . . . . 10 ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅
17 reurmo 3354 . . . . . . . . . 10 (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅)
1816, 17ax-mp 5 . . . . . . . . 9 ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅
196idghm 19145 . . . . . . . . . . 11 (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
204, 19ax-mp 5 . . . . . . . . . 10 ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)
21 tru 1544 . . . . . . . . . 10
2220, 21pm3.2i 470 . . . . . . . . 9 (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)
23 eqid 2729 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
2423, 60ghm 19144 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺))
254, 4, 24mp2an 692 . . . . . . . . . 10 (𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺)
2625, 21pm3.2i 470 . . . . . . . . 9 ((𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)
27 co02 6221 . . . . . . . . . . . 12 (𝑓 ∘ ∅) = ∅
2827bitru 1549 . . . . . . . . . . 11 ((𝑓 ∘ ∅) = ∅ ↔ ⊤)
2928a1i 11 . . . . . . . . . 10 (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤))
3028a1i 11 . . . . . . . . . 10 (𝑓 = (𝐵 × {(0g𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤))
3129, 30rmoi 3851 . . . . . . . . 9 ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g𝐺)}))
3218, 22, 26, 31mp3an 1463 . . . . . . . 8 ( I ↾ 𝐵) = (𝐵 × {(0g𝐺)})
33 mptresid 6011 . . . . . . . 8 ( I ↾ 𝐵) = (𝑥𝐵𝑥)
34 fconstmpt 5693 . . . . . . . 8 (𝐵 × {(0g𝐺)}) = (𝑥𝐵 ↦ (0g𝐺))
3532, 33, 343eqtr3i 2760 . . . . . . 7 (𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺))
36 mpteqb 6969 . . . . . . . 8 (∀𝑥𝐵 𝑥𝐵 → ((𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺)) ↔ ∀𝑥𝐵 𝑥 = (0g𝐺)))
37 id 22 . . . . . . . 8 (𝑥𝐵𝑥𝐵)
3836, 37mprg 3050 . . . . . . 7 ((𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺)) ↔ ∀𝑥𝐵 𝑥 = (0g𝐺))
3935, 38mpbi 230 . . . . . 6 𝑥𝐵 𝑥 = (0g𝐺)
4039rspec 3226 . . . . 5 (𝑥𝐵𝑥 = (0g𝐺))
41 velsn 4601 . . . . 5 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
4240, 41sylibr 234 . . . 4 (𝑥𝐵𝑥 ∈ {(0g𝐺)})
4342ssriv 3947 . . 3 𝐵 ⊆ {(0g𝐺)}
446, 23grpidcl 18879 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
454, 44ax-mp 5 . . . 4 (0g𝐺) ∈ 𝐵
46 snssi 4768 . . . 4 ((0g𝐺) ∈ 𝐵 → {(0g𝐺)} ⊆ 𝐵)
4745, 46ax-mp 5 . . 3 {(0g𝐺)} ⊆ 𝐵
4843, 47eqssi 3960 . 2 𝐵 = {(0g𝐺)}
49 fvex 6853 . . 3 (0g𝐺) ∈ V
5049ensn1 8969 . 2 {(0g𝐺)} ≈ 1o
5148, 50eqbrtri 5123 1 𝐵 ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  ∃!wreu 3349  ∃*wrmo 3350  Vcvv 3444  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  cres 5633  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  1oc1o 8404  cen 8892  Basecbs 17155  0gc0g 17378  Grpcgrp 18847   GrpHom cghm 19126   ~FG cefg 19620  freeGrpcfrgp 19621  varFGrpcvrgp 19622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-gsum 17381  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-frmd 18758  df-vrmd 18759  df-grp 18850  df-minusg 18851  df-ghm 19127  df-efg 19623  df-frgp 19624  df-vrgp 19625
This theorem is referenced by:  frgpcyg  21515
  Copyright terms: Public domain W3C validator