MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0frgp Structured version   Visualization version   GIF version

Theorem 0frgp 19300
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
0frgp.g 𝐺 = (freeGrp‘∅)
0frgp.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
0frgp 𝐵 ≈ 1o

Proof of Theorem 0frgp
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
2 0frgp.g . . . . . . . . . . . . 13 𝐺 = (freeGrp‘∅)
32frgpgrp 19283 . . . . . . . . . . . 12 (∅ ∈ V → 𝐺 ∈ Grp)
41, 3ax-mp 5 . . . . . . . . . . 11 𝐺 ∈ Grp
5 f0 6639 . . . . . . . . . . 11 ∅:∅⟶𝐵
6 0frgp.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
7 eqid 2738 . . . . . . . . . . . . . . . 16 ( ~FG ‘∅) = ( ~FG ‘∅)
8 eqid 2738 . . . . . . . . . . . . . . . 16 (varFGrp‘∅) = (varFGrp‘∅)
97, 8, 2, 6vrgpf 19289 . . . . . . . . . . . . . . 15 (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵)
10 ffn 6584 . . . . . . . . . . . . . . 15 ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅)
111, 9, 10mp2b 10 . . . . . . . . . . . . . 14 (varFGrp‘∅) Fn ∅
12 fn0 6548 . . . . . . . . . . . . . 14 ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅)
1311, 12mpbi 229 . . . . . . . . . . . . 13 (varFGrp‘∅) = ∅
1413eqcomi 2747 . . . . . . . . . . . 12 ∅ = (varFGrp‘∅)
152, 6, 14frgpup3 19299 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅)
164, 1, 5, 15mp3an 1459 . . . . . . . . . 10 ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅
17 reurmo 3354 . . . . . . . . . 10 (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅)
1816, 17ax-mp 5 . . . . . . . . 9 ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅
196idghm 18764 . . . . . . . . . . 11 (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺))
204, 19ax-mp 5 . . . . . . . . . 10 ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)
21 tru 1543 . . . . . . . . . 10
2220, 21pm3.2i 470 . . . . . . . . 9 (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)
23 eqid 2738 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
2423, 60ghm 18763 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺))
254, 4, 24mp2an 688 . . . . . . . . . 10 (𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺)
2625, 21pm3.2i 470 . . . . . . . . 9 ((𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)
27 co02 6153 . . . . . . . . . . . 12 (𝑓 ∘ ∅) = ∅
2827bitru 1548 . . . . . . . . . . 11 ((𝑓 ∘ ∅) = ∅ ↔ ⊤)
2928a1i 11 . . . . . . . . . 10 (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤))
3028a1i 11 . . . . . . . . . 10 (𝑓 = (𝐵 × {(0g𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤))
3129, 30rmoi 3820 . . . . . . . . 9 ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g𝐺)}))
3218, 22, 26, 31mp3an 1459 . . . . . . . 8 ( I ↾ 𝐵) = (𝐵 × {(0g𝐺)})
33 mptresid 5947 . . . . . . . 8 ( I ↾ 𝐵) = (𝑥𝐵𝑥)
34 fconstmpt 5640 . . . . . . . 8 (𝐵 × {(0g𝐺)}) = (𝑥𝐵 ↦ (0g𝐺))
3532, 33, 343eqtr3i 2774 . . . . . . 7 (𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺))
36 mpteqb 6876 . . . . . . . 8 (∀𝑥𝐵 𝑥𝐵 → ((𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺)) ↔ ∀𝑥𝐵 𝑥 = (0g𝐺)))
37 id 22 . . . . . . . 8 (𝑥𝐵𝑥𝐵)
3836, 37mprg 3077 . . . . . . 7 ((𝑥𝐵𝑥) = (𝑥𝐵 ↦ (0g𝐺)) ↔ ∀𝑥𝐵 𝑥 = (0g𝐺))
3935, 38mpbi 229 . . . . . 6 𝑥𝐵 𝑥 = (0g𝐺)
4039rspec 3131 . . . . 5 (𝑥𝐵𝑥 = (0g𝐺))
41 velsn 4574 . . . . 5 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
4240, 41sylibr 233 . . . 4 (𝑥𝐵𝑥 ∈ {(0g𝐺)})
4342ssriv 3921 . . 3 𝐵 ⊆ {(0g𝐺)}
446, 23grpidcl 18522 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
454, 44ax-mp 5 . . . 4 (0g𝐺) ∈ 𝐵
46 snssi 4738 . . . 4 ((0g𝐺) ∈ 𝐵 → {(0g𝐺)} ⊆ 𝐵)
4745, 46ax-mp 5 . . 3 {(0g𝐺)} ⊆ 𝐵
4843, 47eqssi 3933 . 2 𝐵 = {(0g𝐺)}
49 fvex 6769 . . 3 (0g𝐺) ∈ V
5049ensn1 8761 . 2 {(0g𝐺)} ≈ 1o
5148, 50eqbrtri 5091 1 𝐵 ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  wral 3063  ∃!wreu 3065  ∃*wrmo 3066  Vcvv 3422  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1oc1o 8260  cen 8688  Basecbs 16840  0gc0g 17067  Grpcgrp 18492   GrpHom cghm 18746   ~FG cefg 19227  freeGrpcfrgp 19228  varFGrpcvrgp 19229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-gsum 17070  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-frmd 18403  df-vrmd 18404  df-grp 18495  df-minusg 18496  df-ghm 18747  df-efg 19230  df-frgp 19231  df-vrgp 19232
This theorem is referenced by:  frgpcyg  20693
  Copyright terms: Public domain W3C validator