Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0frgp | Structured version Visualization version GIF version |
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
0frgp.g | ⊢ 𝐺 = (freeGrp‘∅) |
0frgp.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0frgp | ⊢ 𝐵 ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5235 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
2 | 0frgp.g | . . . . . . . . . . . . 13 ⊢ 𝐺 = (freeGrp‘∅) | |
3 | 2 | frgpgrp 19366 | . . . . . . . . . . . 12 ⊢ (∅ ∈ V → 𝐺 ∈ Grp) |
4 | 1, 3 | ax-mp 5 | . . . . . . . . . . 11 ⊢ 𝐺 ∈ Grp |
5 | f0 6653 | . . . . . . . . . . 11 ⊢ ∅:∅⟶𝐵 | |
6 | 0frgp.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
7 | eqid 2740 | . . . . . . . . . . . . . . . 16 ⊢ ( ~FG ‘∅) = ( ~FG ‘∅) | |
8 | eqid 2740 | . . . . . . . . . . . . . . . 16 ⊢ (varFGrp‘∅) = (varFGrp‘∅) | |
9 | 7, 8, 2, 6 | vrgpf 19372 | . . . . . . . . . . . . . . 15 ⊢ (∅ ∈ V → (varFGrp‘∅):∅⟶𝐵) |
10 | ffn 6598 | . . . . . . . . . . . . . . 15 ⊢ ((varFGrp‘∅):∅⟶𝐵 → (varFGrp‘∅) Fn ∅) | |
11 | 1, 9, 10 | mp2b 10 | . . . . . . . . . . . . . 14 ⊢ (varFGrp‘∅) Fn ∅ |
12 | fn0 6562 | . . . . . . . . . . . . . 14 ⊢ ((varFGrp‘∅) Fn ∅ ↔ (varFGrp‘∅) = ∅) | |
13 | 11, 12 | mpbi 229 | . . . . . . . . . . . . 13 ⊢ (varFGrp‘∅) = ∅ |
14 | 13 | eqcomi 2749 | . . . . . . . . . . . 12 ⊢ ∅ = (varFGrp‘∅) |
15 | 2, 6, 14 | frgpup3 19382 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V ∧ ∅:∅⟶𝐵) → ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) |
16 | 4, 1, 5, 15 | mp3an 1460 | . . . . . . . . . 10 ⊢ ∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
17 | reurmo 3363 | . . . . . . . . . 10 ⊢ (∃!𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ → ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ ∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ |
19 | 6 | idghm 18847 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
20 | 4, 19 | ax-mp 5 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) |
21 | tru 1546 | . . . . . . . . . 10 ⊢ ⊤ | |
22 | 20, 21 | pm3.2i 471 | . . . . . . . . 9 ⊢ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
23 | eqid 2740 | . . . . . . . . . . . 12 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
24 | 23, 6 | 0ghm 18846 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ Grp) → (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺)) |
25 | 4, 4, 24 | mp2an 689 | . . . . . . . . . 10 ⊢ (𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) |
26 | 25, 21 | pm3.2i 471 | . . . . . . . . 9 ⊢ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) |
27 | co02 6163 | . . . . . . . . . . . 12 ⊢ (𝑓 ∘ ∅) = ∅ | |
28 | 27 | bitru 1551 | . . . . . . . . . . 11 ⊢ ((𝑓 ∘ ∅) = ∅ ↔ ⊤) |
29 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = ( I ↾ 𝐵) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
30 | 28 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑓 = (𝐵 × {(0g‘𝐺)}) → ((𝑓 ∘ ∅) = ∅ ↔ ⊤)) |
31 | 29, 30 | rmoi 3829 | . . . . . . . . 9 ⊢ ((∃*𝑓 ∈ (𝐺 GrpHom 𝐺)(𝑓 ∘ ∅) = ∅ ∧ (( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤) ∧ ((𝐵 × {(0g‘𝐺)}) ∈ (𝐺 GrpHom 𝐺) ∧ ⊤)) → ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)})) |
32 | 18, 22, 26, 31 | mp3an 1460 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝐵 × {(0g‘𝐺)}) |
33 | mptresid 5957 | . . . . . . . 8 ⊢ ( I ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝑥) | |
34 | fconstmpt 5650 | . . . . . . . 8 ⊢ (𝐵 × {(0g‘𝐺)}) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) | |
35 | 32, 33, 34 | 3eqtr3i 2776 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) |
36 | mpteqb 6891 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺))) | |
37 | id 22 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐵) | |
38 | 36, 37 | mprg 3080 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝑥) = (𝑥 ∈ 𝐵 ↦ (0g‘𝐺)) ↔ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺)) |
39 | 35, 38 | mpbi 229 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐵 𝑥 = (0g‘𝐺) |
40 | 39 | rspec 3134 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0g‘𝐺)) |
41 | velsn 4583 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
42 | 40, 41 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ {(0g‘𝐺)}) |
43 | 42 | ssriv 3930 | . . 3 ⊢ 𝐵 ⊆ {(0g‘𝐺)} |
44 | 6, 23 | grpidcl 18605 | . . . . 5 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
45 | 4, 44 | ax-mp 5 | . . . 4 ⊢ (0g‘𝐺) ∈ 𝐵 |
46 | snssi 4747 | . . . 4 ⊢ ((0g‘𝐺) ∈ 𝐵 → {(0g‘𝐺)} ⊆ 𝐵) | |
47 | 45, 46 | ax-mp 5 | . . 3 ⊢ {(0g‘𝐺)} ⊆ 𝐵 |
48 | 43, 47 | eqssi 3942 | . 2 ⊢ 𝐵 = {(0g‘𝐺)} |
49 | fvex 6784 | . . 3 ⊢ (0g‘𝐺) ∈ V | |
50 | 49 | ensn1 8790 | . 2 ⊢ {(0g‘𝐺)} ≈ 1o |
51 | 48, 50 | eqbrtri 5100 | 1 ⊢ 𝐵 ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ⊤wtru 1543 ∈ wcel 2110 ∀wral 3066 ∃!wreu 3068 ∃*wrmo 3069 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 {csn 4567 class class class wbr 5079 ↦ cmpt 5162 I cid 5489 × cxp 5588 ↾ cres 5592 ∘ ccom 5594 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 1oc1o 8281 ≈ cen 8713 Basecbs 16910 0gc0g 17148 Grpcgrp 18575 GrpHom cghm 18829 ~FG cefg 19310 freeGrpcfrgp 19311 varFGrpcvrgp 19312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-ot 4576 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-ec 8483 df-qs 8487 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-fzo 13382 df-seq 13720 df-hash 14043 df-word 14216 df-lsw 14264 df-concat 14272 df-s1 14299 df-substr 14352 df-pfx 14382 df-splice 14461 df-reverse 14470 df-s2 14559 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-0g 17150 df-gsum 17151 df-imas 17217 df-qus 17218 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-frmd 18486 df-vrmd 18487 df-grp 18578 df-minusg 18579 df-ghm 18830 df-efg 19313 df-frgp 19314 df-vrgp 19315 |
This theorem is referenced by: frgpcyg 20779 |
Copyright terms: Public domain | W3C validator |