Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagn0 | Structured version Visualization version GIF version |
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-tagn0 | ⊢ tag 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-0eltag 35168 | . 2 ⊢ ∅ ∈ tag 𝐴 | |
2 | 1 | ne0ii 4271 | 1 ⊢ tag 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∅c0 4256 tag bj-ctag 35164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-bj-tag 35165 |
This theorem is referenced by: bj-1upln0 35199 bj-2upln1upl 35214 |
Copyright terms: Public domain | W3C validator |