Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagn0 Structured version   Visualization version   GIF version

Theorem bj-tagn0 33809
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-tagn0 tag 𝐴 ≠ ∅

Proof of Theorem bj-tagn0
StepHypRef Expression
1 bj-0eltag 33808 . 2 ∅ ∈ tag 𝐴
21ne0ii 4191 1 tag 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2967  c0 4180  tag bj-ctag 33804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750  ax-nul 5068
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-v 3417  df-dif 3834  df-un 3836  df-nul 4181  df-sn 4443  df-bj-tag 33805
This theorem is referenced by:  bj-1upln0  33839  bj-2upln1upl  33854
  Copyright terms: Public domain W3C validator