Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagn0 Structured version   Visualization version   GIF version

Theorem bj-tagn0 36962
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-tagn0 tag 𝐴 ≠ ∅

Proof of Theorem bj-tagn0
StepHypRef Expression
1 bj-0eltag 36961 . 2 ∅ ∈ tag 𝐴
21ne0ii 4350 1 tag 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2938  c0 4339  tag bj-ctag 36957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-bj-tag 36958
This theorem is referenced by:  bj-1upln0  36992  bj-2upln1upl  37007
  Copyright terms: Public domain W3C validator