Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagn0 | Structured version Visualization version GIF version |
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-tagn0 | ⊢ tag 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-0eltag 35070 | . 2 ⊢ ∅ ∈ tag 𝐴 | |
2 | 1 | ne0ii 4269 | 1 ⊢ tag 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∅c0 4254 tag bj-ctag 35066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-nul 5223 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-v 3425 df-dif 3887 df-un 3889 df-nul 4255 df-sn 4559 df-bj-tag 35067 |
This theorem is referenced by: bj-1upln0 35101 bj-2upln1upl 35116 |
Copyright terms: Public domain | W3C validator |