| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagn0 | Structured version Visualization version GIF version | ||
| Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-tagn0 | ⊢ tag 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-0eltag 37022 | . 2 ⊢ ∅ ∈ tag 𝐴 | |
| 2 | 1 | ne0ii 4291 | 1 ⊢ tag 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4280 tag bj-ctag 37018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-bj-tag 37019 |
| This theorem is referenced by: bj-1upln0 37053 bj-2upln1upl 37068 |
| Copyright terms: Public domain | W3C validator |