| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagn0 | Structured version Visualization version GIF version | ||
| Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-tagn0 | ⊢ tag 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-0eltag 36961 | . 2 ⊢ ∅ ∈ tag 𝐴 | |
| 2 | 1 | ne0ii 4309 | 1 ⊢ tag 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 ∅c0 4298 tag bj-ctag 36957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3919 df-un 3921 df-nul 4299 df-sn 4592 df-bj-tag 36958 |
| This theorem is referenced by: bj-1upln0 36992 bj-2upln1upl 37007 |
| Copyright terms: Public domain | W3C validator |