Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagn0 Structured version   Visualization version   GIF version

Theorem bj-tagn0 35071
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-tagn0 tag 𝐴 ≠ ∅

Proof of Theorem bj-tagn0
StepHypRef Expression
1 bj-0eltag 35070 . 2 ∅ ∈ tag 𝐴
21ne0ii 4269 1 tag 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2943  c0 4254  tag bj-ctag 35066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-nul 5223
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-dif 3887  df-un 3889  df-nul 4255  df-sn 4559  df-bj-tag 35067
This theorem is referenced by:  bj-1upln0  35101  bj-2upln1upl  35116
  Copyright terms: Public domain W3C validator