Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagn0 Structured version   Visualization version   GIF version

Theorem bj-tagn0 33271
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-tagn0 tag 𝐴 ≠ ∅

Proof of Theorem bj-tagn0
StepHypRef Expression
1 bj-0eltag 33270 . 2 ∅ ∈ tag 𝐴
21ne0ii 4119 1 tag 𝐴 ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2974  c0 4110  tag bj-ctag 33266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-nul 4977
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-v 3389  df-dif 3766  df-un 3768  df-nul 4111  df-sn 4365  df-bj-tag 33267
This theorem is referenced by:  bj-1upln0  33301  bj-2upln1upl  33316
  Copyright terms: Public domain W3C validator