Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagn0 | Structured version Visualization version GIF version |
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-tagn0 | ⊢ tag 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-0eltag 34780 | . 2 ⊢ ∅ ∈ tag 𝐴 | |
2 | 1 | ne0ii 4224 | 1 ⊢ tag 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2934 ∅c0 4209 tag bj-ctag 34776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-nul 5171 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3399 df-dif 3844 df-un 3846 df-nul 4210 df-sn 4514 df-bj-tag 34777 |
This theorem is referenced by: bj-1upln0 34811 bj-2upln1upl 34826 |
Copyright terms: Public domain | W3C validator |