| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upleq | Structured version Visualization version GIF version | ||
| Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1upleq | ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-xtageq 37030 | . 2 ⊢ (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵)) | |
| 2 | df-bj-1upl 37040 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 3 | df-bj-1upl 37040 | . 2 ⊢ ⦅𝐵⦆ = ({∅} × tag 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∅c0 4280 {csn 4573 × cxp 5612 tag bj-ctag 37016 ⦅bj-c1upl 37039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-un 3902 df-opab 5152 df-xp 5620 df-bj-sngl 37008 df-bj-tag 37017 df-bj-1upl 37040 |
| This theorem is referenced by: bj-1uplth 37049 bj-2upleq 37054 |
| Copyright terms: Public domain | W3C validator |