Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1upleq Structured version   Visualization version   GIF version

Theorem bj-1upleq 36535
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1upleq (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)

Proof of Theorem bj-1upleq
StepHypRef Expression
1 bj-xtageq 36524 . 2 (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵))
2 df-bj-1upl 36534 . 2 𝐴⦆ = ({∅} × tag 𝐴)
3 df-bj-1upl 36534 . 2 𝐵⦆ = ({∅} × tag 𝐵)
41, 2, 33eqtr4g 2790 1 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  c0 4318  {csn 4624   × cxp 5670  tag bj-ctag 36510  bj-c1upl 36533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rex 3061  df-v 3465  df-un 3944  df-opab 5206  df-xp 5678  df-bj-sngl 36502  df-bj-tag 36511  df-bj-1upl 36534
This theorem is referenced by:  bj-1uplth  36543  bj-2upleq  36548
  Copyright terms: Public domain W3C validator