![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upleq | Structured version Visualization version GIF version |
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1upleq | ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xtageq 36524 | . 2 ⊢ (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵)) | |
2 | df-bj-1upl 36534 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
3 | df-bj-1upl 36534 | . 2 ⊢ ⦅𝐵⦆ = ({∅} × tag 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∅c0 4318 {csn 4624 × cxp 5670 tag bj-ctag 36510 ⦅bj-c1upl 36533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rex 3061 df-v 3465 df-un 3944 df-opab 5206 df-xp 5678 df-bj-sngl 36502 df-bj-tag 36511 df-bj-1upl 36534 |
This theorem is referenced by: bj-1uplth 36543 bj-2upleq 36548 |
Copyright terms: Public domain | W3C validator |