Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1upleq Structured version   Visualization version   GIF version

Theorem bj-1upleq 35880
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1upleq (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)

Proof of Theorem bj-1upleq
StepHypRef Expression
1 bj-xtageq 35869 . 2 (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵))
2 df-bj-1upl 35879 . 2 𝐴⦆ = ({∅} × tag 𝐴)
3 df-bj-1upl 35879 . 2 𝐵⦆ = ({∅} × tag 𝐵)
41, 2, 33eqtr4g 2798 1 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  c0 4323  {csn 4629   × cxp 5675  tag bj-ctag 35855  bj-c1upl 35878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3072  df-v 3477  df-un 3954  df-opab 5212  df-xp 5683  df-bj-sngl 35847  df-bj-tag 35856  df-bj-1upl 35879
This theorem is referenced by:  bj-1uplth  35888  bj-2upleq  35893
  Copyright terms: Public domain W3C validator