![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upleq | Structured version Visualization version GIF version |
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1upleq | ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xtageq 35869 | . 2 ⊢ (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵)) | |
2 | df-bj-1upl 35879 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
3 | df-bj-1upl 35879 | . 2 ⊢ ⦅𝐵⦆ = ({∅} × tag 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∅c0 4323 {csn 4629 × cxp 5675 tag bj-ctag 35855 ⦅bj-c1upl 35878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-v 3477 df-un 3954 df-opab 5212 df-xp 5683 df-bj-sngl 35847 df-bj-tag 35856 df-bj-1upl 35879 |
This theorem is referenced by: bj-1uplth 35888 bj-2upleq 35893 |
Copyright terms: Public domain | W3C validator |