Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upleq | Structured version Visualization version GIF version |
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1upleq | ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xtageq 35157 | . 2 ⊢ (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵)) | |
2 | df-bj-1upl 35167 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
3 | df-bj-1upl 35167 | . 2 ⊢ ⦅𝐵⦆ = ({∅} × tag 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∅c0 4261 {csn 4566 × cxp 5586 tag bj-ctag 35143 ⦅bj-c1upl 35166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-un 3896 df-opab 5141 df-xp 5594 df-bj-sngl 35135 df-bj-tag 35144 df-bj-1upl 35167 |
This theorem is referenced by: bj-1uplth 35176 bj-2upleq 35181 |
Copyright terms: Public domain | W3C validator |