Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1upleq Structured version   Visualization version   GIF version

Theorem bj-1upleq 36994
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1upleq (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)

Proof of Theorem bj-1upleq
StepHypRef Expression
1 bj-xtageq 36983 . 2 (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵))
2 df-bj-1upl 36993 . 2 𝐴⦆ = ({∅} × tag 𝐴)
3 df-bj-1upl 36993 . 2 𝐵⦆ = ({∅} × tag 𝐵)
41, 2, 33eqtr4g 2790 1 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  c0 4299  {csn 4592   × cxp 5639  tag bj-ctag 36969  bj-c1upl 36992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3452  df-un 3922  df-opab 5173  df-xp 5647  df-bj-sngl 36961  df-bj-tag 36970  df-bj-1upl 36993
This theorem is referenced by:  bj-1uplth  37002  bj-2upleq  37007
  Copyright terms: Public domain W3C validator