| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upleq | Structured version Visualization version GIF version | ||
| Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1upleq | ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-xtageq 37011 | . 2 ⊢ (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵)) | |
| 2 | df-bj-1upl 37021 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 3 | df-bj-1upl 37021 | . 2 ⊢ ⦅𝐵⦆ = ({∅} × tag 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∅c0 4313 {csn 4606 × cxp 5657 tag bj-ctag 36997 ⦅bj-c1upl 37020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-v 3466 df-un 3936 df-opab 5187 df-xp 5665 df-bj-sngl 36989 df-bj-tag 36998 df-bj-1upl 37021 |
| This theorem is referenced by: bj-1uplth 37030 bj-2upleq 37035 |
| Copyright terms: Public domain | W3C validator |