Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1upleq Structured version   Visualization version   GIF version

Theorem bj-1upleq 35168
Description: Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1upleq (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)

Proof of Theorem bj-1upleq
StepHypRef Expression
1 bj-xtageq 35157 . 2 (𝐴 = 𝐵 → ({∅} × tag 𝐴) = ({∅} × tag 𝐵))
2 df-bj-1upl 35167 . 2 𝐴⦆ = ({∅} × tag 𝐴)
3 df-bj-1upl 35167 . 2 𝐵⦆ = ({∅} × tag 𝐵)
41, 2, 33eqtr4g 2804 1 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  c0 4261  {csn 4566   × cxp 5586  tag bj-ctag 35143  bj-c1upl 35166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-v 3432  df-un 3896  df-opab 5141  df-xp 5594  df-bj-sngl 35135  df-bj-tag 35144  df-bj-1upl 35167
This theorem is referenced by:  bj-1uplth  35176  bj-2upleq  35181
  Copyright terms: Public domain W3C validator