| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplth | Structured version Visualization version GIF version | ||
| Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1uplth | ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr1eq 36966 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → pr1 ⦅𝐴⦆ = pr1 ⦅𝐵⦆) | |
| 2 | bj-pr11val 36969 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 3 | bj-pr11val 36969 | . . 3 ⊢ pr1 ⦅𝐵⦆ = 𝐵 | |
| 4 | 1, 2, 3 | 3eqtr3g 2793 | . 2 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵) |
| 5 | bj-1upleq 36963 | . 2 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
| 6 | 4, 5 | impbii 209 | 1 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⦅bj-c1upl 36961 pr1 bj-cpr1 36964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-bj-sngl 36930 df-bj-tag 36939 df-bj-proj 36955 df-bj-1upl 36962 df-bj-pr1 36965 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |