![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplth | Structured version Visualization version GIF version |
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplth | ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr1eq 36968 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → pr1 ⦅𝐴⦆ = pr1 ⦅𝐵⦆) | |
2 | bj-pr11val 36971 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
3 | bj-pr11val 36971 | . . 3 ⊢ pr1 ⦅𝐵⦆ = 𝐵 | |
4 | 1, 2, 3 | 3eqtr3g 2803 | . 2 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵) |
5 | bj-1upleq 36965 | . 2 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
6 | 4, 5 | impbii 209 | 1 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⦅bj-c1upl 36963 pr1 bj-cpr1 36966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-bj-sngl 36932 df-bj-tag 36941 df-bj-proj 36957 df-bj-1upl 36964 df-bj-pr1 36967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |