Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplth Structured version   Visualization version   GIF version

Theorem bj-1uplth 36971
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplth (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)

Proof of Theorem bj-1uplth
StepHypRef Expression
1 bj-pr1eq 36966 . . 3 (⦅𝐴⦆ = ⦅𝐵⦆ → pr1𝐴⦆ = pr1𝐵⦆)
2 bj-pr11val 36969 . . 3 pr1𝐴⦆ = 𝐴
3 bj-pr11val 36969 . . 3 pr1𝐵⦆ = 𝐵
41, 2, 33eqtr3g 2793 . 2 (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵)
5 bj-1upleq 36963 . 2 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
64, 5impbii 209 1 (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  bj-c1upl 36961  pr1 bj-cpr1 36964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-bj-sngl 36930  df-bj-tag 36939  df-bj-proj 36955  df-bj-1upl 36962  df-bj-pr1 36965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator