Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplth Structured version   Visualization version   GIF version

Theorem bj-1uplth 35197
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplth (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)

Proof of Theorem bj-1uplth
StepHypRef Expression
1 bj-pr1eq 35192 . . 3 (⦅𝐴⦆ = ⦅𝐵⦆ → pr1𝐴⦆ = pr1𝐵⦆)
2 bj-pr11val 35195 . . 3 pr1𝐴⦆ = 𝐴
3 bj-pr11val 35195 . . 3 pr1𝐵⦆ = 𝐵
41, 2, 33eqtr3g 2801 . 2 (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵)
5 bj-1upleq 35189 . 2 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
64, 5impbii 208 1 (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  bj-c1upl 35187  pr1 bj-cpr1 35190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-bj-sngl 35156  df-bj-tag 35165  df-bj-proj 35181  df-bj-1upl 35188  df-bj-pr1 35191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator