![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplth | Structured version Visualization version GIF version |
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplth | ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr1eq 33562 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → pr1 ⦅𝐴⦆ = pr1 ⦅𝐵⦆) | |
2 | bj-pr11val 33565 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
3 | bj-pr11val 33565 | . . 3 ⊢ pr1 ⦅𝐵⦆ = 𝐵 | |
4 | 1, 2, 3 | 3eqtr3g 2836 | . 2 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵) |
5 | bj-1upleq 33559 | . 2 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
6 | 4, 5 | impbii 201 | 1 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 ⦅bj-c1upl 33557 pr1 bj-cpr1 33560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-bj-sngl 33526 df-bj-tag 33535 df-bj-proj 33551 df-bj-1upl 33558 df-bj-pr1 33561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |