| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplth | Structured version Visualization version GIF version | ||
| Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1uplth | ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr1eq 37046 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → pr1 ⦅𝐴⦆ = pr1 ⦅𝐵⦆) | |
| 2 | bj-pr11val 37049 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 3 | bj-pr11val 37049 | . . 3 ⊢ pr1 ⦅𝐵⦆ = 𝐵 | |
| 4 | 1, 2, 3 | 3eqtr3g 2789 | . 2 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵) |
| 5 | bj-1upleq 37043 | . 2 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
| 6 | 4, 5 | impbii 209 | 1 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⦅bj-c1upl 37041 pr1 bj-cpr1 37044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-bj-sngl 37010 df-bj-tag 37019 df-bj-proj 37035 df-bj-1upl 37042 df-bj-pr1 37045 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |