Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplth | Structured version Visualization version GIF version |
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplth | ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr1eq 34720 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → pr1 ⦅𝐴⦆ = pr1 ⦅𝐵⦆) | |
2 | bj-pr11val 34723 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
3 | bj-pr11val 34723 | . . 3 ⊢ pr1 ⦅𝐵⦆ = 𝐵 | |
4 | 1, 2, 3 | 3eqtr3g 2817 | . 2 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵) |
5 | bj-1upleq 34717 | . 2 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
6 | 4, 5 | impbii 212 | 1 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1539 ⦅bj-c1upl 34715 pr1 bj-cpr1 34718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-bj-sngl 34684 df-bj-tag 34693 df-bj-proj 34709 df-bj-1upl 34716 df-bj-pr1 34719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |