Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplth Structured version   Visualization version   GIF version

Theorem bj-1uplth 37001
Description: The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplth (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)

Proof of Theorem bj-1uplth
StepHypRef Expression
1 bj-pr1eq 36996 . . 3 (⦅𝐴⦆ = ⦅𝐵⦆ → pr1𝐴⦆ = pr1𝐵⦆)
2 bj-pr11val 36999 . . 3 pr1𝐴⦆ = 𝐴
3 bj-pr11val 36999 . . 3 pr1𝐵⦆ = 𝐵
41, 2, 33eqtr3g 2787 . 2 (⦅𝐴⦆ = ⦅𝐵⦆ → 𝐴 = 𝐵)
5 bj-1upleq 36993 . 2 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
64, 5impbii 209 1 (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  bj-c1upl 36991  pr1 bj-cpr1 36994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-bj-sngl 36960  df-bj-tag 36969  df-bj-proj 36985  df-bj-1upl 36992  df-bj-pr1 36995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator