| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upleq | Structured version Visualization version GIF version | ||
| Description: Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2upleq | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-1upleq 37022 | . . 3 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
| 2 | bj-xtageq 37011 | . . 3 ⊢ (𝐶 = 𝐷 → ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) | |
| 3 | uneq12 4143 | . . . 4 ⊢ ((⦅𝐴⦆ = ⦅𝐵⦆ ∧ ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → (({1o} × tag 𝐶) = ({1o} × tag 𝐷) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
| 5 | 1, 2, 4 | syl2im 40 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
| 6 | df-bj-2upl 37034 | . . 3 ⊢ ⦅𝐴, 𝐶⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) | |
| 7 | df-bj-2upl 37034 | . . 3 ⊢ ⦅𝐵, 𝐷⦆ = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)) | |
| 8 | 6, 7 | eqeq12i 2754 | . 2 ⊢ (⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆ ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) |
| 9 | 5, 8 | imbitrrdi 252 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3929 {csn 4606 × cxp 5657 1oc1o 8478 tag bj-ctag 36997 ⦅bj-c1upl 37020 ⦅bj-c2uple 37033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-v 3466 df-un 3936 df-opab 5187 df-xp 5665 df-bj-sngl 36989 df-bj-tag 36998 df-bj-1upl 37021 df-bj-2upl 37034 |
| This theorem is referenced by: bj-2uplth 37044 |
| Copyright terms: Public domain | W3C validator |