Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2upleq Structured version   Visualization version   GIF version

Theorem bj-2upleq 36995
Description: Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-2upleq (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆))

Proof of Theorem bj-2upleq
StepHypRef Expression
1 bj-1upleq 36982 . . 3 (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆)
2 bj-xtageq 36971 . . 3 (𝐶 = 𝐷 → ({1o} × tag 𝐶) = ({1o} × tag 𝐷))
3 uneq12 4173 . . . 4 ((⦅𝐴⦆ = ⦅𝐵⦆ ∧ ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))
43ex 412 . . 3 (⦅𝐴⦆ = ⦅𝐵⦆ → (({1o} × tag 𝐶) = ({1o} × tag 𝐷) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))))
51, 2, 4syl2im 40 . 2 (𝐴 = 𝐵 → (𝐶 = 𝐷 → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))))
6 df-bj-2upl 36994 . . 3 𝐴, 𝐶⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐶))
7 df-bj-2upl 36994 . . 3 𝐵, 𝐷⦆ = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))
86, 7eqeq12i 2753 . 2 (⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆ ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))
95, 8imbitrrdi 252 1 (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3961  {csn 4631   × cxp 5687  1oc1o 8498  tag bj-ctag 36957  bj-c1upl 36980  bj-c2uple 36993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-v 3480  df-un 3968  df-opab 5211  df-xp 5695  df-bj-sngl 36949  df-bj-tag 36958  df-bj-1upl 36981  df-bj-2upl 36994
This theorem is referenced by:  bj-2uplth  37004
  Copyright terms: Public domain W3C validator