| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upleq | Structured version Visualization version GIF version | ||
| Description: Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-2upleq | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-1upleq 37001 | . . 3 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
| 2 | bj-xtageq 36990 | . . 3 ⊢ (𝐶 = 𝐷 → ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) | |
| 3 | uneq12 4162 | . . . 4 ⊢ ((⦅𝐴⦆ = ⦅𝐵⦆ ∧ ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → (({1o} × tag 𝐶) = ({1o} × tag 𝐷) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
| 5 | 1, 2, 4 | syl2im 40 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
| 6 | df-bj-2upl 37013 | . . 3 ⊢ ⦅𝐴, 𝐶⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) | |
| 7 | df-bj-2upl 37013 | . . 3 ⊢ ⦅𝐵, 𝐷⦆ = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)) | |
| 8 | 6, 7 | eqeq12i 2754 | . 2 ⊢ (⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆ ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) |
| 9 | 5, 8 | imbitrrdi 252 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∪ cun 3948 {csn 4625 × cxp 5682 1oc1o 8500 tag bj-ctag 36976 ⦅bj-c1upl 36999 ⦅bj-c2uple 37012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rex 3070 df-v 3481 df-un 3955 df-opab 5205 df-xp 5690 df-bj-sngl 36968 df-bj-tag 36977 df-bj-1upl 37000 df-bj-2upl 37013 |
| This theorem is referenced by: bj-2uplth 37023 |
| Copyright terms: Public domain | W3C validator |