![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upleq | Structured version Visualization version GIF version |
Description: Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-2upleq | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-1upleq 33858 | . . 3 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
2 | bj-xtageq 33847 | . . 3 ⊢ (𝐶 = 𝐷 → ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) | |
3 | uneq12 4017 | . . . 4 ⊢ ((⦅𝐴⦆ = ⦅𝐵⦆ ∧ ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) | |
4 | 3 | ex 405 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → (({1o} × tag 𝐶) = ({1o} × tag 𝐷) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
5 | 1, 2, 4 | syl2im 40 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
6 | df-bj-2upl 33870 | . . 3 ⊢ ⦅𝐴, 𝐶⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) | |
7 | df-bj-2upl 33870 | . . 3 ⊢ ⦅𝐵, 𝐷⦆ = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)) | |
8 | 6, 7 | eqeq12i 2786 | . 2 ⊢ (⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆ ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) |
9 | 5, 8 | syl6ibr 244 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∪ cun 3821 {csn 4435 × cxp 5401 1oc1o 7896 tag bj-ctag 33833 ⦅bj-c1upl 33856 ⦅bj-c2uple 33869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rex 3088 df-v 3411 df-un 3828 df-opab 4988 df-xp 5409 df-bj-sngl 33825 df-bj-tag 33834 df-bj-1upl 33857 df-bj-2upl 33870 |
This theorem is referenced by: bj-2uplth 33880 |
Copyright terms: Public domain | W3C validator |