Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upleq | Structured version Visualization version GIF version |
Description: Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-2upleq | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-1upleq 35116 | . . 3 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
2 | bj-xtageq 35105 | . . 3 ⊢ (𝐶 = 𝐷 → ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) | |
3 | uneq12 4088 | . . . 4 ⊢ ((⦅𝐴⦆ = ⦅𝐵⦆ ∧ ({1o} × tag 𝐶) = ({1o} × tag 𝐷)) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) | |
4 | 3 | ex 412 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → (({1o} × tag 𝐶) = ({1o} × tag 𝐷) → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
5 | 1, 2, 4 | syl2im 40 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)))) |
6 | df-bj-2upl 35128 | . . 3 ⊢ ⦅𝐴, 𝐶⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) | |
7 | df-bj-2upl 35128 | . . 3 ⊢ ⦅𝐵, 𝐷⦆ = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷)) | |
8 | 6, 7 | eqeq12i 2756 | . 2 ⊢ (⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆ ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1o} × tag 𝐷))) |
9 | 5, 8 | syl6ibr 251 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3881 {csn 4558 × cxp 5578 1oc1o 8260 tag bj-ctag 35091 ⦅bj-c1upl 35114 ⦅bj-c2uple 35127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-un 3888 df-opab 5133 df-xp 5586 df-bj-sngl 35083 df-bj-tag 35092 df-bj-1upl 35115 df-bj-2upl 35128 |
This theorem is referenced by: bj-2uplth 35138 |
Copyright terms: Public domain | W3C validator |