![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-prfromadj | Structured version Visualization version GIF version |
Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-prfromadj | ⊢ {𝑥, 𝑦} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4635 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
2 | bj-snfromadj 37039 | . . 3 ⊢ {𝑥} ∈ V | |
3 | bj-adjg1 37038 | . . 3 ⊢ ({𝑥} ∈ V → ({𝑥} ∪ {𝑦}) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ({𝑥} ∪ {𝑦}) ∈ V |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ {𝑥, 𝑦} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3479 ∪ cun 3962 {csn 4632 {cpr 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-nul 5313 ax-bj-adj 37037 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3967 df-un 3969 df-nul 4341 df-sn 4633 df-pr 4635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |