| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-prfromadj | Structured version Visualization version GIF version | ||
| Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-prfromadj | ⊢ {𝑥, 𝑦} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4609 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
| 2 | bj-snfromadj 36979 | . . 3 ⊢ {𝑥} ∈ V | |
| 3 | bj-adjg1 36978 | . . 3 ⊢ ({𝑥} ∈ V → ({𝑥} ∪ {𝑦}) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ({𝑥} ∪ {𝑦}) ∈ V |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ {𝑥, 𝑦} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-nul 5286 ax-bj-adj 36977 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |