| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-prfromadj | Structured version Visualization version GIF version | ||
| Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-prfromadj | ⊢ {𝑥, 𝑦} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4576 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
| 2 | bj-snfromadj 37088 | . . 3 ⊢ {𝑥} ∈ V | |
| 3 | bj-adjg1 37087 | . . 3 ⊢ ({𝑥} ∈ V → ({𝑥} ∪ {𝑦}) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ({𝑥} ∪ {𝑦}) ∈ V |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ {𝑥, 𝑦} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-nul 5242 ax-bj-adj 37086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |