Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prfromadj Structured version   Visualization version   GIF version

Theorem bj-prfromadj 37089
Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prfromadj {𝑥, 𝑦} ∈ V

Proof of Theorem bj-prfromadj
StepHypRef Expression
1 df-pr 4576 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
2 bj-snfromadj 37088 . . 3 {𝑥} ∈ V
3 bj-adjg1 37087 . . 3 ({𝑥} ∈ V → ({𝑥} ∪ {𝑦}) ∈ V)
42, 3ax-mp 5 . 2 ({𝑥} ∪ {𝑦}) ∈ V
51, 4eqeltri 2827 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cun 3895  {csn 4573  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5242  ax-bj-adj 37086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-nul 4281  df-sn 4574  df-pr 4576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator