Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prfromadj Structured version   Visualization version   GIF version

Theorem bj-prfromadj 37040
Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prfromadj {𝑥, 𝑦} ∈ V

Proof of Theorem bj-prfromadj
StepHypRef Expression
1 df-pr 4635 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
2 bj-snfromadj 37039 . . 3 {𝑥} ∈ V
3 bj-adjg1 37038 . . 3 ({𝑥} ∈ V → ({𝑥} ∪ {𝑦}) ∈ V)
42, 3ax-mp 5 . 2 ({𝑥} ∪ {𝑦}) ∈ V
51, 4eqeltri 2836 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3479  cun 3962  {csn 4632  {cpr 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-nul 5313  ax-bj-adj 37037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-dif 3967  df-un 3969  df-nul 4341  df-sn 4633  df-pr 4635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator