Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prfromadj Structured version   Visualization version   GIF version

Theorem bj-prfromadj 36980
Description: Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prfromadj {𝑥, 𝑦} ∈ V

Proof of Theorem bj-prfromadj
StepHypRef Expression
1 df-pr 4609 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
2 bj-snfromadj 36979 . . 3 {𝑥} ∈ V
3 bj-adjg1 36978 . . 3 ({𝑥} ∈ V → ({𝑥} ∪ {𝑦}) ∈ V)
42, 3ax-mp 5 . 2 ({𝑥} ∪ {𝑦}) ∈ V
51, 4eqeltri 2829 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463  cun 3929  {csn 4606  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706  ax-nul 5286  ax-bj-adj 36977
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator