| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elsn0 | Structured version Visualization version GIF version | ||
| Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4620 and elsn2g 4645 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-elsn0 | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4623 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | bj-inexeqex 37177 | . . . . 5 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 4 | elsng 4620 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 5 | 4 | biimprd 248 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 6 | 2, 3, 5 | 3syl 18 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 7 | 6 | ex 412 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵}))) |
| 8 | 7 | pm2.43d 53 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 9 | 1, 8 | impbid2 226 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |