| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elsn0 | Structured version Visualization version GIF version | ||
| Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4591 and elsn2g 4616 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-elsn0 | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4594 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | bj-inexeqex 37148 | . . . . 5 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 4 | elsng 4591 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 5 | 4 | biimprd 248 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 6 | 2, 3, 5 | 3syl 18 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 7 | 6 | ex 412 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵}))) |
| 8 | 7 | pm2.43d 53 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 9 | 1, 8 | impbid2 226 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-sn 4578 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |