Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsn0 Structured version   Visualization version   GIF version

Theorem bj-elsn0 36503
Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4642 and elsn2g 4666 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.)
Assertion
Ref Expression
bj-elsn0 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem bj-elsn0
StepHypRef Expression
1 elsni 4645 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 bj-inexeqex 36502 . . . . 5 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 482 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
4 elsng 4642 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
54biimprd 247 . . . . 5 (𝐴 ∈ V → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
62, 3, 53syl 18 . . . 4 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
76ex 412 . . 3 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 ∈ {𝐵})))
87pm2.43d 53 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
91, 8impbid2 225 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-in 3955  df-ss 3965  df-sn 4629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator