Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsn0 Structured version   Visualization version   GIF version

Theorem bj-elsn0 37149
Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4591 and elsn2g 4616 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.)
Assertion
Ref Expression
bj-elsn0 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem bj-elsn0
StepHypRef Expression
1 elsni 4594 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 bj-inexeqex 37148 . . . . 5 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 482 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
4 elsng 4591 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
54biimprd 248 . . . . 5 (𝐴 ∈ V → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
62, 3, 53syl 18 . . . 4 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
76ex 412 . . 3 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 ∈ {𝐵})))
87pm2.43d 53 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
91, 8impbid2 226 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-in 3910  df-ss 3920  df-sn 4578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator