Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elsn0 Structured version   Visualization version   GIF version

Theorem bj-elsn0 37178
Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4620 and elsn2g 4645 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.)
Assertion
Ref Expression
bj-elsn0 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem bj-elsn0
StepHypRef Expression
1 elsni 4623 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 bj-inexeqex 37177 . . . . 5 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 simpl 482 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
4 elsng 4620 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
54biimprd 248 . . . . 5 (𝐴 ∈ V → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
62, 3, 53syl 18 . . . 4 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
76ex 412 . . 3 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 ∈ {𝐵})))
87pm2.43d 53 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
91, 8impbid2 226 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-in 3938  df-ss 3948  df-sn 4607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator