Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elsn0 | Structured version Visualization version GIF version |
Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4539 and elsn2g 4563 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.) |
Ref | Expression |
---|---|
bj-elsn0 | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4542 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | bj-inexeqex 34884 | . . . . 5 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | simpl 486 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
4 | elsng 4539 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
5 | 4 | biimprd 251 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
6 | 2, 3, 5 | 3syl 18 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
7 | 6 | ex 416 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵}))) |
8 | 7 | pm2.43d 53 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
9 | 1, 8 | impbid2 229 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 {csn 4525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-in 3867 df-ss 3877 df-sn 4526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |