| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elsn0 | Structured version Visualization version GIF version | ||
| Description: If the intersection of two classes is a set, then these classes are equal if and only if one is an element of the singleton formed on the other. Stronger form of elsng 4622 and elsn2g 4646 (which could be proved from it). (Contributed by BJ, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| bj-elsn0 | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4625 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | bj-inexeqex 37096 | . . . . 5 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 4 | elsng 4622 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 5 | 4 | biimprd 248 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 6 | 2, 3, 5 | 3syl 18 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 7 | 6 | ex 412 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵}))) |
| 8 | 7 | pm2.43d 53 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 9 | 1, 8 | impbid2 226 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∩ cin 3932 {csn 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-in 3940 df-ss 3950 df-sn 4609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |