Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inexeqex Structured version   Visualization version   GIF version

Theorem bj-inexeqex 35321
Description: Lemma for bj-opelid 35323 (but not specific to the identity relation): if the intersection of two classes is a set and the two classes are equal, then both are sets (all three classes are equal, so they all belong to 𝑉, but it is more convenient to have V in the consequent for theorems using it). (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-inexeqex (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-inexeqex
StepHypRef Expression
1 eqimss 3982 . . . . 5 (𝐴 = 𝐵𝐴𝐵)
2 df-ss 3909 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 217 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
4 eleq1 2828 . . . . 5 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ 𝑉𝐴𝑉))
54biimpac 479 . . . 4 (((𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = 𝐴) → 𝐴𝑉)
63, 5sylan2 593 . . 3 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐴𝑉)
76elexd 3451 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
8 eqimss2 3983 . . . . 5 (𝐴 = 𝐵𝐵𝐴)
9 sseqin2 4155 . . . . 5 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
108, 9sylib 217 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
11 eleq1 2828 . . . . 5 ((𝐴𝐵) = 𝐵 → ((𝐴𝐵) ∈ 𝑉𝐵𝑉))
1211biimpac 479 . . . 4 (((𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = 𝐵) → 𝐵𝑉)
1310, 12sylan2 593 . . 3 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐵𝑉)
1413elexd 3451 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐵 ∈ V)
157, 14jca 512 1 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  cin 3891  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-in 3899  df-ss 3909
This theorem is referenced by:  bj-elsn0  35322  bj-opelid  35323  bj-ideqgALT  35325
  Copyright terms: Public domain W3C validator