Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inexeqex Structured version   Visualization version   GIF version

Theorem bj-inexeqex 37137
Description: Lemma for bj-opelid 37139 (but not specific to the identity relation): if the intersection of two classes is a set and the two classes are equal, then both are sets (all three classes are equal, so they all belong to 𝑉, but it is more convenient to have V in the consequent for theorems using it). (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-inexeqex (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-inexeqex
StepHypRef Expression
1 eqimss 4054 . . . . 5 (𝐴 = 𝐵𝐴𝐵)
2 dfss2 3981 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
31, 2sylib 218 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
4 eleq1 2827 . . . . 5 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ 𝑉𝐴𝑉))
54biimpac 478 . . . 4 (((𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = 𝐴) → 𝐴𝑉)
63, 5sylan2 593 . . 3 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐴𝑉)
76elexd 3502 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
8 eqimss2 4055 . . . . 5 (𝐴 = 𝐵𝐵𝐴)
9 sseqin2 4231 . . . . 5 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
108, 9sylib 218 . . . 4 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
11 eleq1 2827 . . . . 5 ((𝐴𝐵) = 𝐵 → ((𝐴𝐵) ∈ 𝑉𝐵𝑉))
1211biimpac 478 . . . 4 (((𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = 𝐵) → 𝐵𝑉)
1310, 12sylan2 593 . . 3 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐵𝑉)
1413elexd 3502 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → 𝐵 ∈ V)
157, 14jca 511 1 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-in 3970  df-ss 3980
This theorem is referenced by:  bj-elsn0  37138  bj-opelid  37139  bj-ideqgALT  37141
  Copyright terms: Public domain W3C validator