![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inexeqex | Structured version Visualization version GIF version |
Description: Lemma for bj-opelid 36635 (but not specific to the identity relation): if the intersection of two classes is a set and the two classes are equal, then both are sets (all three classes are equal, so they all belong to 𝑉, but it is more convenient to have V in the consequent for theorems using it). (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-inexeqex | ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4038 | . . . . 5 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | df-ss 3964 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
4 | eleq1 2817 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) | |
5 | 4 | biimpac 478 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) = 𝐴) → 𝐴 ∈ 𝑉) |
6 | 3, 5 | sylan2 592 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
7 | 6 | elexd 3492 | . 2 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
8 | eqimss2 4039 | . . . . 5 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
9 | sseqin2 4215 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
11 | eleq1 2817 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = 𝐵 → ((𝐴 ∩ 𝐵) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
12 | 11 | biimpac 478 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) = 𝐵) → 𝐵 ∈ 𝑉) |
13 | 10, 12 | sylan2 592 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑉) |
14 | 13 | elexd 3492 | . 2 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
15 | 7, 14 | jca 511 | 1 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∩ cin 3946 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: bj-elsn0 36634 bj-opelid 36635 bj-ideqgALT 36637 |
Copyright terms: Public domain | W3C validator |