![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gabssd | Structured version Visualization version GIF version |
Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.) |
Ref | Expression |
---|---|
bj-gabssd.nf | ⊢ (𝜑 → ∀𝑥𝜑) |
bj-gabssd.c | ⊢ (𝜑 → 𝐴 = 𝐵) |
bj-gabssd.f | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bj-gabssd | ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-gabssd.nf | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | bj-gabssd.c | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | bj-gabssd.f | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jca 512 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ∧ (𝜓 → 𝜒))) |
5 | 1, 4 | alrimih 1826 | . 2 ⊢ (𝜑 → ∀𝑥(𝐴 = 𝐵 ∧ (𝜓 → 𝜒))) |
6 | bj-gabss 35803 | . 2 ⊢ (∀𝑥(𝐴 = 𝐵 ∧ (𝜓 → 𝜒)) → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → {𝐴 ∣ 𝑥 ∣ 𝜓} ⊆ {𝐵 ∣ 𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ⊆ wss 3947 {bj-cgab 35801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-in 3954 df-ss 3964 df-bj-gab 35802 |
This theorem is referenced by: bj-gabeqd 35805 |
Copyright terms: Public domain | W3C validator |