Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabssd Structured version   Visualization version   GIF version

Theorem bj-gabssd 36980
Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.)
Hypotheses
Ref Expression
bj-gabssd.nf (𝜑 → ∀𝑥𝜑)
bj-gabssd.c (𝜑𝐴 = 𝐵)
bj-gabssd.f (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bj-gabssd (𝜑 → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})

Proof of Theorem bj-gabssd
StepHypRef Expression
1 bj-gabssd.nf . . 3 (𝜑 → ∀𝑥𝜑)
2 bj-gabssd.c . . . 4 (𝜑𝐴 = 𝐵)
3 bj-gabssd.f . . . 4 (𝜑 → (𝜓𝜒))
42, 3jca 511 . . 3 (𝜑 → (𝐴 = 𝐵 ∧ (𝜓𝜒)))
51, 4alrimih 1825 . 2 (𝜑 → ∀𝑥(𝐴 = 𝐵 ∧ (𝜓𝜒)))
6 bj-gabss 36979 . 2 (∀𝑥(𝐴 = 𝐵 ∧ (𝜓𝜒)) → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})
75, 6syl 17 1 (𝜑 → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wss 3897  {bj-cgab 36977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ss 3914  df-bj-gab 36978
This theorem is referenced by:  bj-gabeqd  36981
  Copyright terms: Public domain W3C validator