Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabssd Structured version   Visualization version   GIF version

Theorem bj-gabssd 36959
Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024.)
Hypotheses
Ref Expression
bj-gabssd.nf (𝜑 → ∀𝑥𝜑)
bj-gabssd.c (𝜑𝐴 = 𝐵)
bj-gabssd.f (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bj-gabssd (𝜑 → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})

Proof of Theorem bj-gabssd
StepHypRef Expression
1 bj-gabssd.nf . . 3 (𝜑 → ∀𝑥𝜑)
2 bj-gabssd.c . . . 4 (𝜑𝐴 = 𝐵)
3 bj-gabssd.f . . . 4 (𝜑 → (𝜓𝜒))
42, 3jca 511 . . 3 (𝜑 → (𝐴 = 𝐵 ∧ (𝜓𝜒)))
51, 4alrimih 1824 . 2 (𝜑 → ∀𝑥(𝐴 = 𝐵 ∧ (𝜓𝜒)))
6 bj-gabss 36958 . 2 (∀𝑥(𝐴 = 𝐵 ∧ (𝜓𝜒)) → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})
75, 6syl 17 1 (𝜑 → {𝐴𝑥𝜓} ⊆ {𝐵𝑥𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wss 3931  {bj-cgab 36956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ss 3948  df-bj-gab 36957
This theorem is referenced by:  bj-gabeqd  36960
  Copyright terms: Public domain W3C validator