Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqgALT Structured version   Visualization version   GIF version

Theorem bj-ideqgALT 37124
Description: Alternate proof of bj-ideqg 37123 from brabga 5553 instead of bj-opelid 37122 itself proved from bj-opelidb 37118. (Contributed by BJ, 27-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-ideqgALT ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5850 . . . 4 Rel I
21brrelex12i 5755 . . 3 (𝐴 I 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32adantl 481 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 bj-inexeqex 37120 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 eqeq12 2757 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
6 df-id 5593 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
75, 6brabga 5553 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
83, 4, 7pm5.21nd 801 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975   class class class wbr 5166   I cid 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator