Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqgALT Structured version   Visualization version   GIF version

Theorem bj-ideqgALT 35338
Description: Alternate proof of bj-ideqg 35337 from brabga 5450 instead of bj-opelid 35336 itself proved from bj-opelidb 35332. (Contributed by BJ, 27-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-ideqgALT ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5735 . . . 4 Rel I
21brrelex12i 5643 . . 3 (𝐴 I 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32adantl 482 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 bj-inexeqex 35334 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 eqeq12 2757 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
6 df-id 5490 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
75, 6brabga 5450 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
83, 4, 7pm5.21nd 799 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  cin 3891   class class class wbr 5079   I cid 5489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator