Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ideqgALT Structured version   Visualization version   GIF version

Theorem bj-ideqgALT 37153
Description: Alternate proof of bj-ideqg 37152 from brabga 5497 instead of bj-opelid 37151 itself proved from bj-opelidb 37147. (Contributed by BJ, 27-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-ideqgALT ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem bj-ideqgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5792 . . . 4 Rel I
21brrelex12i 5696 . . 3 (𝐴 I 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32adantl 481 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 bj-inexeqex 37149 . 2 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 eqeq12 2747 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
6 df-id 5536 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
75, 6brabga 5497 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
83, 4, 7pm5.21nd 801 1 ((𝐴𝐵) ∈ 𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916   class class class wbr 5110   I cid 5535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator