| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ideqgALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of bj-ideqg 37208 from brabga 5477 instead of bj-opelid 37207 itself proved from bj-opelidb 37203. (Contributed by BJ, 27-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ideqgALT | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5771 | . . . 4 ⊢ Rel I | |
| 2 | 1 | brrelex12i 5674 | . . 3 ⊢ (𝐴 I 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | 2 | adantl 481 | . 2 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 4 | bj-inexeqex 37205 | . 2 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | eqeq12 2748 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 6 | df-id 5514 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 7 | 5, 6 | brabga 5477 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 8 | 3, 4, 7 | pm5.21nd 801 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 class class class wbr 5093 I cid 5513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |