| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3988 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2739 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: pweq 4561 ifpprsnss 4714 unieq 4867 disjeq2 5060 disjeq1 5063 poeq2 5526 freq2 5582 seeq1 5584 seeq2 5585 dmcoeq 5919 xp11 6122 suc11 6415 funeq 6501 fimadmfoALT 6746 foco 6749 fconst3 7147 sorpssuni 7665 sorpssint 7666 tposeq 8158 oaass 8476 odi 8494 oen0 8501 mapssfset 8775 inficl 9309 fodomfi2 9951 zorng 10395 rlimclim 15453 imasaddfnlem 17432 imasvscafn 17441 gasubg 19214 pgpssslw 19526 dprddisj2 19953 dprd2da 19956 imadrhmcl 20712 evlslem6 22016 topgele 22845 topontopn 22855 connima 23340 islocfin 23432 ptbasfi 23496 txdis 23547 neifil 23795 elfm3 23865 rnelfmlem 23867 alexsubALTlem3 23964 alexsubALTlem4 23965 utopsnneiplem 24162 lmclimf 25231 uniiccdif 25506 dv11cn 25933 plypf1 26144 2pthon3v 29921 hstoh 32212 dmdi2 32284 disjeq1f 32553 eulerpartlemd 34379 rrvdmss 34462 umgr2cycllem 35184 refssfne 36400 neibastop3 36404 topmeet 36406 topjoin 36407 fnemeet2 36409 fnejoin1 36410 bj-restuni 37139 bj-inexeqex 37196 bj-idreseq 37204 heiborlem3 37861 funALTVeq 38746 disjeq 38780 lsatelbN 39053 lkrscss 39145 lshpset2N 39166 mapdrvallem2 41692 hdmaprnlem3eN 41905 hdmaplkr 41960 uneqsn 44066 ssrecnpr 44349 founiiun 45224 founiiun0 45235 caragendifcl 46560 fnfocofob 47118 imasetpreimafvbijlemfo 47444 iuneqconst2 48862 iineqconst2 48863 unilbeu 49024 |
| Copyright terms: Public domain | W3C validator |