| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3994 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2737 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: pweq 4565 ifpprsnss 4716 unieq 4869 disjeq2 5063 disjeq1 5066 poeq2 5531 freq2 5587 seeq1 5589 seeq2 5590 dmcoeq 5922 xp11 6124 suc11 6416 funeq 6502 fimadmfoALT 6747 foco 6750 fconst3 7149 sorpssuni 7668 sorpssint 7669 tposeq 8161 oaass 8479 odi 8497 oen0 8504 mapssfset 8778 inficl 9315 fodomfi2 9954 zorng 10398 rlimclim 15453 imasaddfnlem 17432 imasvscafn 17441 gasubg 19181 pgpssslw 19493 dprddisj2 19920 dprd2da 19923 imadrhmcl 20682 evlslem6 21986 topgele 22815 topontopn 22825 connima 23310 islocfin 23402 ptbasfi 23466 txdis 23517 neifil 23765 elfm3 23835 rnelfmlem 23837 alexsubALTlem3 23934 alexsubALTlem4 23935 utopsnneiplem 24133 lmclimf 25202 uniiccdif 25477 dv11cn 25904 plypf1 26115 2pthon3v 29888 hstoh 32176 dmdi2 32248 disjeq1f 32517 eulerpartlemd 34334 rrvdmss 34417 umgr2cycllem 35113 refssfne 36332 neibastop3 36336 topmeet 36338 topjoin 36339 fnemeet2 36341 fnejoin1 36342 bj-restuni 37071 bj-inexeqex 37128 bj-idreseq 37136 heiborlem3 37793 funALTVeq 38678 disjeq 38712 lsatelbN 38985 lkrscss 39077 lshpset2N 39098 mapdrvallem2 41624 hdmaprnlem3eN 41837 hdmaplkr 41892 uneqsn 43998 ssrecnpr 44281 founiiun 45157 founiiun0 45168 caragendifcl 46495 fnfocofob 47063 imasetpreimafvbijlemfo 47389 iuneqconst2 48807 iineqconst2 48808 unilbeu 48969 |
| Copyright terms: Public domain | W3C validator |