| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4005 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2737 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: pweq 4577 ifpprsnss 4728 unieq 4882 disjeq2 5078 disjeq1 5081 poeq2 5550 freq2 5606 seeq1 5608 seeq2 5609 dmcoeq 5942 xp11 6148 suc11 6441 funeq 6536 fimadmfoALT 6783 foco 6786 fconst3 7187 sorpssuni 7708 sorpssint 7709 tposeq 8207 oaass 8525 odi 8543 oen0 8550 mapssfset 8824 inficl 9376 fodomfi2 10013 zorng 10457 rlimclim 15512 imasaddfnlem 17491 imasvscafn 17500 gasubg 19234 pgpssslw 19544 dprddisj2 19971 dprd2da 19974 imadrhmcl 20706 evlslem6 21988 topgele 22817 topontopn 22827 connima 23312 islocfin 23404 ptbasfi 23468 txdis 23519 neifil 23767 elfm3 23837 rnelfmlem 23839 alexsubALTlem3 23936 alexsubALTlem4 23937 utopsnneiplem 24135 lmclimf 25204 uniiccdif 25479 dv11cn 25906 plypf1 26117 2pthon3v 29873 hstoh 32161 dmdi2 32233 disjeq1f 32502 eulerpartlemd 34357 rrvdmss 34440 umgr2cycllem 35127 refssfne 36346 neibastop3 36350 topmeet 36352 topjoin 36353 fnemeet2 36355 fnejoin1 36356 bj-restuni 37085 bj-inexeqex 37142 bj-idreseq 37150 heiborlem3 37807 funALTVeq 38692 disjeq 38726 lsatelbN 38999 lkrscss 39091 lshpset2N 39112 mapdrvallem2 41639 hdmaprnlem3eN 41852 hdmaplkr 41907 uneqsn 44014 ssrecnpr 44297 founiiun 45173 founiiun0 45184 caragendifcl 46512 fnfocofob 47080 imasetpreimafvbijlemfo 47406 iuneqconst2 48811 iineqconst2 48812 unilbeu 48973 |
| Copyright terms: Public domain | W3C validator |