Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version |
Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3973 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2746 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: pweq 4546 ifpprsnss 4697 unieq 4847 disjeq2 5039 disjeq1 5042 poeq2 5498 freq2 5551 seeq1 5552 seeq2 5553 dmcoeq 5872 xp11 6067 suc11 6354 funeq 6438 fimadmfoALT 6683 foco 6686 fconst3 7071 sorpssuni 7563 sorpssint 7564 tposeq 8015 oaass 8354 odi 8372 oen0 8379 mapssfset 8597 inficl 9114 fodomfi2 9747 zorng 10191 rlimclim 15183 imasaddfnlem 17156 imasvscafn 17165 gasubg 18823 pgpssslw 19134 dprddisj2 19557 dprd2da 19560 evlslem6 21201 topgele 21987 topontopn 21997 connima 22484 islocfin 22576 ptbasfi 22640 txdis 22691 neifil 22939 elfm3 23009 rnelfmlem 23011 alexsubALTlem3 23108 alexsubALTlem4 23109 utopsnneiplem 23307 lmclimf 24373 uniiccdif 24647 dv11cn 25070 plypf1 25278 2pthon3v 28209 hstoh 30495 dmdi2 30567 disjeq1f 30813 eulerpartlemd 32233 rrvdmss 32316 umgr2cycllem 33002 refssfne 34474 neibastop3 34478 topmeet 34480 topjoin 34481 fnemeet2 34483 fnejoin1 34484 bj-restuni 35195 bj-inexeqex 35252 bj-idreseq 35260 heiborlem3 35898 funALTVeq 36738 disjeq 36772 lsatelbN 36947 lkrscss 37039 lshpset2N 37060 mapdrvallem2 39586 hdmaprnlem3eN 39799 hdmaplkr 39854 uneqsn 41522 ssrecnpr 41815 founiiun 42604 founiiun0 42617 caragendifcl 43942 fnfocofob 44458 imasetpreimafvbijlemfo 44745 unilbeu 46159 |
Copyright terms: Public domain | W3C validator |