Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version |
Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3977 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2746 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: pweq 4549 ifpprsnss 4700 unieq 4850 disjeq2 5043 disjeq1 5046 poeq2 5507 freq2 5560 seeq1 5561 seeq2 5562 dmcoeq 5883 xp11 6078 suc11 6369 funeq 6454 fimadmfoALT 6699 foco 6702 fconst3 7089 sorpssuni 7585 sorpssint 7586 tposeq 8044 oaass 8392 odi 8410 oen0 8417 mapssfset 8639 inficl 9184 fodomfi2 9816 zorng 10260 rlimclim 15255 imasaddfnlem 17239 imasvscafn 17248 gasubg 18908 pgpssslw 19219 dprddisj2 19642 dprd2da 19645 evlslem6 21291 topgele 22079 topontopn 22089 connima 22576 islocfin 22668 ptbasfi 22732 txdis 22783 neifil 23031 elfm3 23101 rnelfmlem 23103 alexsubALTlem3 23200 alexsubALTlem4 23201 utopsnneiplem 23399 lmclimf 24468 uniiccdif 24742 dv11cn 25165 plypf1 25373 2pthon3v 28308 hstoh 30594 dmdi2 30666 disjeq1f 30912 eulerpartlemd 32333 rrvdmss 32416 umgr2cycllem 33102 refssfne 34547 neibastop3 34551 topmeet 34553 topjoin 34554 fnemeet2 34556 fnejoin1 34557 bj-restuni 35268 bj-inexeqex 35325 bj-idreseq 35333 heiborlem3 35971 funALTVeq 36811 disjeq 36845 lsatelbN 37020 lkrscss 37112 lshpset2N 37133 mapdrvallem2 39659 hdmaprnlem3eN 39872 hdmaplkr 39927 uneqsn 41633 ssrecnpr 41926 founiiun 42715 founiiun0 42728 caragendifcl 44052 fnfocofob 44571 imasetpreimafvbijlemfo 44857 unilbeu 46271 |
Copyright terms: Public domain | W3C validator |