![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version |
Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4067 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2748 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: pweq 4636 ifpprsnss 4789 unieq 4942 disjeq2 5137 disjeq1 5140 poeq2 5611 freq2 5668 seeq1 5670 seeq2 5671 dmcoeq 6001 xp11 6206 suc11 6502 funeq 6598 fimadmfoALT 6845 foco 6848 fconst3 7250 sorpssuni 7767 sorpssint 7768 tposeq 8269 oaass 8617 odi 8635 oen0 8642 mapssfset 8909 inficl 9494 fodomfi2 10129 zorng 10573 rlimclim 15592 imasaddfnlem 17588 imasvscafn 17597 gasubg 19342 pgpssslw 19656 dprddisj2 20083 dprd2da 20086 imadrhmcl 20820 evlslem6 22128 topgele 22957 topontopn 22967 connima 23454 islocfin 23546 ptbasfi 23610 txdis 23661 neifil 23909 elfm3 23979 rnelfmlem 23981 alexsubALTlem3 24078 alexsubALTlem4 24079 utopsnneiplem 24277 lmclimf 25357 uniiccdif 25632 dv11cn 26060 plypf1 26271 2pthon3v 29976 hstoh 32264 dmdi2 32336 disjeq1f 32595 eulerpartlemd 34331 rrvdmss 34414 umgr2cycllem 35108 refssfne 36324 neibastop3 36328 topmeet 36330 topjoin 36331 fnemeet2 36333 fnejoin1 36334 bj-restuni 37063 bj-inexeqex 37120 bj-idreseq 37128 heiborlem3 37773 funALTVeq 38656 disjeq 38690 lsatelbN 38962 lkrscss 39054 lshpset2N 39075 mapdrvallem2 41602 hdmaprnlem3eN 41815 hdmaplkr 41870 uneqsn 43987 ssrecnpr 44277 founiiun 45086 founiiun0 45097 caragendifcl 46435 fnfocofob 46994 imasetpreimafvbijlemfo 47279 unilbeu 48657 |
Copyright terms: Public domain | W3C validator |