| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4002 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2737 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: pweq 4573 ifpprsnss 4724 unieq 4878 disjeq2 5073 disjeq1 5076 poeq2 5543 freq2 5599 seeq1 5601 seeq2 5602 dmcoeq 5931 xp11 6136 suc11 6429 funeq 6520 fimadmfoALT 6765 foco 6768 fconst3 7169 sorpssuni 7688 sorpssint 7689 tposeq 8184 oaass 8502 odi 8520 oen0 8527 mapssfset 8801 inficl 9352 fodomfi2 9989 zorng 10433 rlimclim 15488 imasaddfnlem 17467 imasvscafn 17476 gasubg 19216 pgpssslw 19528 dprddisj2 19955 dprd2da 19958 imadrhmcl 20717 evlslem6 22021 topgele 22850 topontopn 22860 connima 23345 islocfin 23437 ptbasfi 23501 txdis 23552 neifil 23800 elfm3 23870 rnelfmlem 23872 alexsubALTlem3 23969 alexsubALTlem4 23970 utopsnneiplem 24168 lmclimf 25237 uniiccdif 25512 dv11cn 25939 plypf1 26150 2pthon3v 29923 hstoh 32211 dmdi2 32283 disjeq1f 32552 eulerpartlemd 34350 rrvdmss 34433 umgr2cycllem 35120 refssfne 36339 neibastop3 36343 topmeet 36345 topjoin 36346 fnemeet2 36348 fnejoin1 36349 bj-restuni 37078 bj-inexeqex 37135 bj-idreseq 37143 heiborlem3 37800 funALTVeq 38685 disjeq 38719 lsatelbN 38992 lkrscss 39084 lshpset2N 39105 mapdrvallem2 41632 hdmaprnlem3eN 41845 hdmaplkr 41900 uneqsn 44007 ssrecnpr 44290 founiiun 45166 founiiun0 45177 caragendifcl 46505 fnfocofob 47073 imasetpreimafvbijlemfo 47399 iuneqconst2 48804 iineqconst2 48805 unilbeu 48966 |
| Copyright terms: Public domain | W3C validator |