| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4002 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2737 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: pweq 4573 ifpprsnss 4724 unieq 4878 disjeq2 5073 disjeq1 5076 poeq2 5543 freq2 5599 seeq1 5601 seeq2 5602 dmcoeq 5931 xp11 6136 suc11 6429 funeq 6520 fimadmfoALT 6765 foco 6768 fconst3 7169 sorpssuni 7688 sorpssint 7689 tposeq 8184 oaass 8502 odi 8520 oen0 8527 mapssfset 8801 inficl 9352 fodomfi2 9989 zorng 10433 rlimclim 15488 imasaddfnlem 17467 imasvscafn 17476 gasubg 19210 pgpssslw 19520 dprddisj2 19947 dprd2da 19950 imadrhmcl 20682 evlslem6 21964 topgele 22793 topontopn 22803 connima 23288 islocfin 23380 ptbasfi 23444 txdis 23495 neifil 23743 elfm3 23813 rnelfmlem 23815 alexsubALTlem3 23912 alexsubALTlem4 23913 utopsnneiplem 24111 lmclimf 25180 uniiccdif 25455 dv11cn 25882 plypf1 26093 2pthon3v 29846 hstoh 32134 dmdi2 32206 disjeq1f 32475 eulerpartlemd 34330 rrvdmss 34413 umgr2cycllem 35100 refssfne 36319 neibastop3 36323 topmeet 36325 topjoin 36326 fnemeet2 36328 fnejoin1 36329 bj-restuni 37058 bj-inexeqex 37115 bj-idreseq 37123 heiborlem3 37780 funALTVeq 38665 disjeq 38699 lsatelbN 38972 lkrscss 39064 lshpset2N 39085 mapdrvallem2 41612 hdmaprnlem3eN 41825 hdmaplkr 41880 uneqsn 43987 ssrecnpr 44270 founiiun 45146 founiiun0 45157 caragendifcl 46485 fnfocofob 47053 imasetpreimafvbijlemfo 47379 iuneqconst2 48784 iineqconst2 48785 unilbeu 48946 |
| Copyright terms: Public domain | W3C validator |