| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4008 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2738 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: pweq 4580 ifpprsnss 4731 unieq 4885 disjeq2 5081 disjeq1 5084 poeq2 5553 freq2 5609 seeq1 5611 seeq2 5612 dmcoeq 5945 xp11 6151 suc11 6444 funeq 6539 fimadmfoALT 6786 foco 6789 fconst3 7190 sorpssuni 7711 sorpssint 7712 tposeq 8210 oaass 8528 odi 8546 oen0 8553 mapssfset 8827 inficl 9383 fodomfi2 10020 zorng 10464 rlimclim 15519 imasaddfnlem 17498 imasvscafn 17507 gasubg 19241 pgpssslw 19551 dprddisj2 19978 dprd2da 19981 imadrhmcl 20713 evlslem6 21995 topgele 22824 topontopn 22834 connima 23319 islocfin 23411 ptbasfi 23475 txdis 23526 neifil 23774 elfm3 23844 rnelfmlem 23846 alexsubALTlem3 23943 alexsubALTlem4 23944 utopsnneiplem 24142 lmclimf 25211 uniiccdif 25486 dv11cn 25913 plypf1 26124 2pthon3v 29880 hstoh 32168 dmdi2 32240 disjeq1f 32509 eulerpartlemd 34364 rrvdmss 34447 umgr2cycllem 35134 refssfne 36353 neibastop3 36357 topmeet 36359 topjoin 36360 fnemeet2 36362 fnejoin1 36363 bj-restuni 37092 bj-inexeqex 37149 bj-idreseq 37157 heiborlem3 37814 funALTVeq 38699 disjeq 38733 lsatelbN 39006 lkrscss 39098 lshpset2N 39119 mapdrvallem2 41646 hdmaprnlem3eN 41859 hdmaplkr 41914 uneqsn 44021 ssrecnpr 44304 founiiun 45180 founiiun0 45191 caragendifcl 46519 fnfocofob 47084 imasetpreimafvbijlemfo 47410 iuneqconst2 48815 iineqconst2 48816 unilbeu 48977 |
| Copyright terms: Public domain | W3C validator |