| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version | ||
| Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4017 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2743 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: pweq 4589 ifpprsnss 4740 unieq 4894 disjeq2 5090 disjeq1 5093 poeq2 5565 freq2 5622 seeq1 5624 seeq2 5625 dmcoeq 5958 xp11 6164 suc11 6461 funeq 6556 fimadmfoALT 6801 foco 6804 fconst3 7205 sorpssuni 7726 sorpssint 7727 tposeq 8227 oaass 8573 odi 8591 oen0 8598 mapssfset 8865 inficl 9437 fodomfi2 10074 zorng 10518 rlimclim 15562 imasaddfnlem 17542 imasvscafn 17551 gasubg 19285 pgpssslw 19595 dprddisj2 20022 dprd2da 20025 imadrhmcl 20757 evlslem6 22039 topgele 22868 topontopn 22878 connima 23363 islocfin 23455 ptbasfi 23519 txdis 23570 neifil 23818 elfm3 23888 rnelfmlem 23890 alexsubALTlem3 23987 alexsubALTlem4 23988 utopsnneiplem 24186 lmclimf 25256 uniiccdif 25531 dv11cn 25958 plypf1 26169 2pthon3v 29925 hstoh 32213 dmdi2 32285 disjeq1f 32554 eulerpartlemd 34398 rrvdmss 34481 umgr2cycllem 35162 refssfne 36376 neibastop3 36380 topmeet 36382 topjoin 36383 fnemeet2 36385 fnejoin1 36386 bj-restuni 37115 bj-inexeqex 37172 bj-idreseq 37180 heiborlem3 37837 funALTVeq 38718 disjeq 38752 lsatelbN 39024 lkrscss 39116 lshpset2N 39137 mapdrvallem2 41664 hdmaprnlem3eN 41877 hdmaplkr 41932 uneqsn 44049 ssrecnpr 44332 founiiun 45203 founiiun0 45214 caragendifcl 46543 fnfocofob 47108 imasetpreimafvbijlemfo 47419 iuneqconst2 48801 iineqconst2 48802 unilbeu 48959 |
| Copyright terms: Public domain | W3C validator |