Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version |
Description: Equality implies inclusion. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3982 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2748 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 |
This theorem is referenced by: pweq 4555 ifpprsnss 4706 unieq 4856 disjeq2 5048 disjeq1 5051 poeq2 5508 freq2 5561 seeq1 5562 seeq2 5563 dmcoeq 5882 xp11 6077 suc11 6368 funeq 6452 fimadmfoALT 6697 foco 6700 fconst3 7086 sorpssuni 7580 sorpssint 7581 tposeq 8036 oaass 8384 odi 8402 oen0 8409 mapssfset 8631 inficl 9172 fodomfi2 9827 zorng 10271 rlimclim 15266 imasaddfnlem 17250 imasvscafn 17259 gasubg 18919 pgpssslw 19230 dprddisj2 19653 dprd2da 19656 evlslem6 21302 topgele 22090 topontopn 22100 connima 22587 islocfin 22679 ptbasfi 22743 txdis 22794 neifil 23042 elfm3 23112 rnelfmlem 23114 alexsubALTlem3 23211 alexsubALTlem4 23212 utopsnneiplem 23410 lmclimf 24479 uniiccdif 24753 dv11cn 25176 plypf1 25384 2pthon3v 28317 hstoh 30603 dmdi2 30675 disjeq1f 30921 eulerpartlemd 32342 rrvdmss 32425 umgr2cycllem 33111 refssfne 34556 neibastop3 34560 topmeet 34562 topjoin 34563 fnemeet2 34565 fnejoin1 34566 bj-restuni 35277 bj-inexeqex 35334 bj-idreseq 35342 heiborlem3 35980 funALTVeq 36820 disjeq 36854 lsatelbN 37029 lkrscss 37121 lshpset2N 37142 mapdrvallem2 39668 hdmaprnlem3eN 39881 hdmaplkr 39936 uneqsn 41615 ssrecnpr 41908 founiiun 42697 founiiun0 42710 caragendifcl 44034 fnfocofob 44550 imasetpreimafvbijlemfo 44836 unilbeu 46250 |
Copyright terms: Public domain | W3C validator |