Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidb1 Structured version   Visualization version   GIF version

Theorem bj-opelidb1 35251
Description: Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb 35250 where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-opelidb1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-opelidb1
StepHypRef Expression
1 an32 642 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ∧ 𝐵 ∈ V))
2 bj-opelidb 35250 . 2 (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
3 eleq1 2826 . . . 4 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
43biimpac 478 . . 3 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V)
54pm4.71i 559 . 2 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ∧ 𝐵 ∈ V))
61, 2, 53bitr4i 302 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   I cid 5479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-id 5480
This theorem is referenced by:  bj-idres  35258  bj-elid3  35265  bj-eldiag2  35275
  Copyright terms: Public domain W3C validator