Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidb1 Structured version   Visualization version   GIF version

Theorem bj-opelidb1 36873
Description: Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb 36872 where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-opelidb1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-opelidb1
StepHypRef Expression
1 an32 644 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ∧ 𝐵 ∈ V))
2 bj-opelidb 36872 . 2 (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
3 eleq1 2814 . . . 4 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
43biimpac 477 . . 3 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V)
54pm4.71i 558 . 2 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ∧ 𝐵 ∈ V))
61, 2, 53bitr4i 302 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cop 4629   I cid 5571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-opab 5208  df-id 5572
This theorem is referenced by:  bj-idres  36880  bj-elid3  36887  bj-eldiag2  36897
  Copyright terms: Public domain W3C validator