Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidb1 | Structured version Visualization version GIF version |
Description: Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb 35250 where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-opelidb1 | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 642 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ∧ 𝐵 ∈ V)) | |
2 | bj-opelidb 35250 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) | |
3 | eleq1 2826 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
4 | 3 | biimpac 478 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
5 | 4 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) ∧ 𝐵 ∈ V)) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 I cid 5479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-id 5480 |
This theorem is referenced by: bj-idres 35258 bj-elid3 35265 bj-eldiag2 35275 |
Copyright terms: Public domain | W3C validator |