| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-prexg | Structured version Visualization version GIF version | ||
| Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn 37056 and ax-bj-bun 37060. Contrary to bj-prex 37063, this proof is intuitionistically valid and does not require ax-nul 5281. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4609 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | bj-snexg 37057 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 3 | bj-snexg 37057 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ∈ V) | |
| 4 | bj-unexg 37061 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V) | |
| 5 | 2, 3, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ∪ {𝐵}) ∈ V) |
| 6 | 1, 5 | eqeltrid 2839 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-bj-sn 37056 ax-bj-bun 37060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |