![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-prexg | Structured version Visualization version GIF version |
Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn 36643 and ax-bj-bun 36647. Contrary to bj-prex 36650, this proof is intuitionistically valid and does not require ax-nul 5307. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4633 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | bj-snexg 36644 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
3 | bj-snexg 36644 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝐵} ∈ V) | |
4 | bj-unexg 36648 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V) | |
5 | 2, 3, 4 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} ∪ {𝐵}) ∈ V) |
6 | 1, 5 | eqeltrid 2829 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3461 ∪ cun 3942 {csn 4630 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 ax-bj-sn 36643 ax-bj-bun 36647 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3949 df-sn 4631 df-pr 4633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |