Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prexg Structured version   Visualization version   GIF version

Theorem bj-prexg 37062
Description: Existence of unordered pairs formed on sets, proved from ax-bj-sn 37056 and ax-bj-bun 37060. Contrary to bj-prex 37063, this proof is intuitionistically valid and does not require ax-nul 5281. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prexg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)

Proof of Theorem bj-prexg
StepHypRef Expression
1 df-pr 4609 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 bj-snexg 37057 . . 3 (𝐴𝑉 → {𝐴} ∈ V)
3 bj-snexg 37057 . . 3 (𝐵𝑊 → {𝐵} ∈ V)
4 bj-unexg 37061 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V)
52, 3, 4syl2an 596 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ∪ {𝐵}) ∈ V)
61, 5eqeltrid 2839 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3464  cun 3929  {csn 4606  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708  ax-bj-sn 37056  ax-bj-bun 37060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator