Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snfromadj Structured version   Visualization version   GIF version

Theorem bj-snfromadj 37029
Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snfromadj {𝑥} ∈ V

Proof of Theorem bj-snfromadj
StepHypRef Expression
1 0un 4367 . 2 (∅ ∪ {𝑥}) = {𝑥}
2 0ex 5270 . . 3 ∅ ∈ V
3 bj-adjg1 37028 . . 3 (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V)
42, 3ax-mp 5 . 2 (∅ ∪ {𝑥}) ∈ V
51, 4eqeltrri 2826 1 {𝑥} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3455  cun 3920  c0 4304  {csn 4597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-nul 5269  ax-bj-adj 37027
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-dif 3925  df-un 3927  df-nul 4305  df-sn 4598
This theorem is referenced by:  bj-prfromadj  37030
  Copyright terms: Public domain W3C validator