Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snfromadj Structured version   Visualization version   GIF version

Theorem bj-snfromadj 37109
Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snfromadj {𝑥} ∈ V

Proof of Theorem bj-snfromadj
StepHypRef Expression
1 0un 4345 . 2 (∅ ∪ {𝑥}) = {𝑥}
2 0ex 5247 . . 3 ∅ ∈ V
3 bj-adjg1 37108 . . 3 (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V)
42, 3ax-mp 5 . 2 (∅ ∪ {𝑥}) ∈ V
51, 4eqeltrri 2830 1 {𝑥} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-nul 5246  ax-bj-adj 37107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-sn 4576
This theorem is referenced by:  bj-prfromadj  37110
  Copyright terms: Public domain W3C validator