Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snfromadj Structured version   Visualization version   GIF version

Theorem bj-snfromadj 36579
Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snfromadj {𝑥} ∈ V

Proof of Theorem bj-snfromadj
StepHypRef Expression
1 0un 4388 . 2 (∅ ∪ {𝑥}) = {𝑥}
2 0ex 5302 . . 3 ∅ ∈ V
3 bj-adjg1 36578 . . 3 (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V)
42, 3ax-mp 5 . 2 (∅ ∪ {𝑥}) ∈ V
51, 4eqeltrri 2822 1 {𝑥} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3463  cun 3938  c0 4318  {csn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2696  ax-nul 5301  ax-bj-adj 36577
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-dif 3943  df-un 3945  df-nul 4319  df-sn 4625
This theorem is referenced by:  bj-prfromadj  36580
  Copyright terms: Public domain W3C validator