![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snfromadj | Structured version Visualization version GIF version |
Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snfromadj | ⊢ {𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0un 4419 | . 2 ⊢ (∅ ∪ {𝑥}) = {𝑥} | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | bj-adjg1 37011 | . . 3 ⊢ (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (∅ ∪ {𝑥}) ∈ V |
5 | 1, 4 | eqeltrri 2841 | 1 ⊢ {𝑥} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-bj-adj 37010 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 |
This theorem is referenced by: bj-prfromadj 37013 |
Copyright terms: Public domain | W3C validator |