| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snfromadj | Structured version Visualization version GIF version | ||
| Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snfromadj | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0un 4367 | . 2 ⊢ (∅ ∪ {𝑥}) = {𝑥} | |
| 2 | 0ex 5270 | . . 3 ⊢ ∅ ∈ V | |
| 3 | bj-adjg1 37028 | . . 3 ⊢ (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (∅ ∪ {𝑥}) ∈ V |
| 5 | 1, 4 | eqeltrri 2826 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3455 ∪ cun 3920 ∅c0 4304 {csn 4597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5269 ax-bj-adj 37027 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-dif 3925 df-un 3927 df-nul 4305 df-sn 4598 |
| This theorem is referenced by: bj-prfromadj 37030 |
| Copyright terms: Public domain | W3C validator |