Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snfromadj Structured version   Visualization version   GIF version

Theorem bj-snfromadj 37039
Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snfromadj {𝑥} ∈ V

Proof of Theorem bj-snfromadj
StepHypRef Expression
1 0un 4403 . 2 (∅ ∪ {𝑥}) = {𝑥}
2 0ex 5314 . . 3 ∅ ∈ V
3 bj-adjg1 37038 . . 3 (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V)
42, 3ax-mp 5 . 2 (∅ ∪ {𝑥}) ∈ V
51, 4eqeltrri 2837 1 {𝑥} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3479  cun 3962  c0 4340  {csn 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-nul 5313  ax-bj-adj 37037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-dif 3967  df-un 3969  df-nul 4341  df-sn 4633
This theorem is referenced by:  bj-prfromadj  37040
  Copyright terms: Public domain W3C validator