![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snfromadj | Structured version Visualization version GIF version |
Description: Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snfromadj | ⊢ {𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0un 4388 | . 2 ⊢ (∅ ∪ {𝑥}) = {𝑥} | |
2 | 0ex 5301 | . . 3 ⊢ ∅ ∈ V | |
3 | bj-adjg1 36445 | . . 3 ⊢ (∅ ∈ V → (∅ ∪ {𝑥}) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (∅ ∪ {𝑥}) ∈ V |
5 | 1, 4 | eqeltrri 2825 | 1 ⊢ {𝑥} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3469 ∪ cun 3942 ∅c0 4318 {csn 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2164 ax-ext 2698 ax-nul 5300 ax-bj-adj 36444 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-dif 3947 df-un 3949 df-nul 4319 df-sn 4625 |
This theorem is referenced by: bj-prfromadj 36447 |
Copyright terms: Public domain | W3C validator |