Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rcleq Structured version   Visualization version   GIF version

Theorem bj-rcleq 37021
Description: Relative version of dfcleq 2730. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-rcleq ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem bj-rcleq
StepHypRef Expression
1 nfcv 2905 . 2 𝑥𝐴
2 nfcv 2905 . 2 𝑥𝐵
3 nfcv 2905 . 2 𝑥𝑉
41, 2, 3bj-rcleqf 37020 1 ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2108  wral 3061  cin 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-v 3483  df-in 3973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator