Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rcleq Structured version   Visualization version   GIF version

Theorem bj-rcleq 36986
Description: Relative version of dfcleq 2727. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-rcleq ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem bj-rcleq
StepHypRef Expression
1 nfcv 2897 . 2 𝑥𝐴
2 nfcv 2897 . 2 𝑥𝐵
3 nfcv 2897 . 2 𝑥𝑉
41, 2, 3bj-rcleqf 36985 1 ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  wral 3050  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-v 3465  df-in 3938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator