| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rcleq | Structured version Visualization version GIF version | ||
| Description: Relative version of dfcleq 2723. (Contributed by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-rcleq | ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2893 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2893 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfcv 2893 | . 2 ⊢ Ⅎ𝑥𝑉 | |
| 4 | 1, 2, 3 | bj-rcleqf 37010 | 1 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∩ cin 3921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-v 3457 df-in 3929 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |