Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rcleq Structured version   Visualization version   GIF version

Theorem bj-rcleq 35264
Description: Relative version of dfcleq 2729. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-rcleq ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem bj-rcleq
StepHypRef Expression
1 nfcv 2904 . 2 𝑥𝐴
2 nfcv 2904 . 2 𝑥𝐵
3 nfcv 2904 . 2 𝑥𝑉
41, 2, 3bj-rcleqf 35263 1 ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  wral 3061  cin 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rab 3333  df-v 3439  df-in 3899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator