![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rcleqf | Structured version Visualization version GIF version |
Description: Relative version of cleqf 2934. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-rcleqf.a | ⊢ Ⅎ𝑥𝐴 |
bj-rcleqf.b | ⊢ Ⅎ𝑥𝐵 |
bj-rcleqf.v | ⊢ Ⅎ𝑥𝑉 |
Ref | Expression |
---|---|
bj-rcleqf | ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3982 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ∩ 𝐴) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴)) | |
2 | elin 3982 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ∩ 𝐵) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bibi12i 339 | . . . 4 ⊢ ((𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵)) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵))) |
4 | pm5.32 573 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵))) | |
5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵)) ↔ (𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
6 | 5 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
7 | bj-rcleqf.v | . . . 4 ⊢ Ⅎ𝑥𝑉 | |
8 | bj-rcleqf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
9 | 7, 8 | nfin 4235 | . . 3 ⊢ Ⅎ𝑥(𝑉 ∩ 𝐴) |
10 | bj-rcleqf.b | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
11 | 7, 10 | nfin 4235 | . . 3 ⊢ Ⅎ𝑥(𝑉 ∩ 𝐵) |
12 | 9, 11 | cleqf 2934 | . 2 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵))) |
13 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
14 | 6, 12, 13 | 3bitr4i 303 | 1 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2890 ∀wral 3061 ∩ cin 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-v 3483 df-in 3973 |
This theorem is referenced by: bj-rcleq 37021 bj-reabeq 37022 |
Copyright terms: Public domain | W3C validator |