Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rcleqf Structured version   Visualization version   GIF version

Theorem bj-rcleqf 35215
Description: Relative version of cleqf 2938. (Contributed by BJ, 27-Dec-2023.)
Hypotheses
Ref Expression
bj-rcleqf.a 𝑥𝐴
bj-rcleqf.b 𝑥𝐵
bj-rcleqf.v 𝑥𝑉
Assertion
Ref Expression
bj-rcleqf ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))

Proof of Theorem bj-rcleqf
StepHypRef Expression
1 elin 3903 . . . . 5 (𝑥 ∈ (𝑉𝐴) ↔ (𝑥𝑉𝑥𝐴))
2 elin 3903 . . . . 5 (𝑥 ∈ (𝑉𝐵) ↔ (𝑥𝑉𝑥𝐵))
31, 2bibi12i 340 . . . 4 ((𝑥 ∈ (𝑉𝐴) ↔ 𝑥 ∈ (𝑉𝐵)) ↔ ((𝑥𝑉𝑥𝐴) ↔ (𝑥𝑉𝑥𝐵)))
4 pm5.32 574 . . . 4 ((𝑥𝑉 → (𝑥𝐴𝑥𝐵)) ↔ ((𝑥𝑉𝑥𝐴) ↔ (𝑥𝑉𝑥𝐵)))
53, 4bitr4i 277 . . 3 ((𝑥 ∈ (𝑉𝐴) ↔ 𝑥 ∈ (𝑉𝐵)) ↔ (𝑥𝑉 → (𝑥𝐴𝑥𝐵)))
65albii 1822 . 2 (∀𝑥(𝑥 ∈ (𝑉𝐴) ↔ 𝑥 ∈ (𝑉𝐵)) ↔ ∀𝑥(𝑥𝑉 → (𝑥𝐴𝑥𝐵)))
7 bj-rcleqf.v . . . 4 𝑥𝑉
8 bj-rcleqf.a . . . 4 𝑥𝐴
97, 8nfin 4150 . . 3 𝑥(𝑉𝐴)
10 bj-rcleqf.b . . . 4 𝑥𝐵
117, 10nfin 4150 . . 3 𝑥(𝑉𝐵)
129, 11cleqf 2938 . 2 ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥(𝑥 ∈ (𝑉𝐴) ↔ 𝑥 ∈ (𝑉𝐵)))
13 df-ral 3069 . 2 (∀𝑥𝑉 (𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝑉 → (𝑥𝐴𝑥𝐵)))
146, 12, 133bitr4i 303 1 ((𝑉𝐴) = (𝑉𝐵) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-in 3894
This theorem is referenced by:  bj-rcleq  35216  bj-reabeq  35217
  Copyright terms: Public domain W3C validator