| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rcleqf | Structured version Visualization version GIF version | ||
| Description: Relative version of cleqf 2922. (Contributed by BJ, 27-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-rcleqf.a | ⊢ Ⅎ𝑥𝐴 |
| bj-rcleqf.b | ⊢ Ⅎ𝑥𝐵 |
| bj-rcleqf.v | ⊢ Ⅎ𝑥𝑉 |
| Ref | Expression |
|---|---|
| bj-rcleqf | ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3938 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ∩ 𝐴) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴)) | |
| 2 | elin 3938 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ∩ 𝐵) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bibi12i 339 | . . . 4 ⊢ ((𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵)) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵))) |
| 4 | pm5.32 573 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵))) | |
| 5 | 3, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵)) ↔ (𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 7 | bj-rcleqf.v | . . . 4 ⊢ Ⅎ𝑥𝑉 | |
| 8 | bj-rcleqf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 9 | 7, 8 | nfin 4195 | . . 3 ⊢ Ⅎ𝑥(𝑉 ∩ 𝐴) |
| 10 | bj-rcleqf.b | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 11 | 7, 10 | nfin 4195 | . . 3 ⊢ Ⅎ𝑥(𝑉 ∩ 𝐵) |
| 12 | 9, 11 | cleqf 2922 | . 2 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝑉 ∩ 𝐴) ↔ 𝑥 ∈ (𝑉 ∩ 𝐵))) |
| 13 | df-ral 3047 | . 2 ⊢ (∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) | |
| 14 | 6, 12, 13 | 3bitr4i 303 | 1 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 ∀wral 3046 ∩ cin 3921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-v 3457 df-in 3929 |
| This theorem is referenced by: bj-rcleq 37011 bj-reabeq 37012 |
| Copyright terms: Public domain | W3C validator |