![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-reabeq | Structured version Visualization version GIF version |
Description: Relative form of eqabb 2873. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-reabeq | ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4309 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = (𝑉 ∩ {𝑥 ∣ 𝜑}) | |
2 | 1 | eqeq2i 2745 | . 2 ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ∩ 𝐴) = (𝑉 ∩ {𝑥 ∣ 𝜑})) |
3 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfab1 2905 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
5 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥𝑉 | |
6 | 3, 4, 5 | bj-rcleqf 35901 | . 2 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ {𝑥 ∣ 𝜑}) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
7 | abid 2713 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
8 | 7 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
9 | 8 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
10 | 2, 6, 9 | 3bitri 296 | 1 ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 {crab 3432 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-in 3955 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |