Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-reabeq | Structured version Visualization version GIF version |
Description: Relative form of abeq2 2870. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-reabeq | ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4256 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = (𝑉 ∩ {𝑥 ∣ 𝜑}) | |
2 | 1 | eqeq2i 2749 | . 2 ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ∩ 𝐴) = (𝑉 ∩ {𝑥 ∣ 𝜑})) |
3 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfab1 2906 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
5 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥𝑉 | |
6 | 3, 4, 5 | bj-rcleqf 35309 | . 2 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ {𝑥 ∣ 𝜑}) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
7 | abid 2717 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
8 | 7 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
9 | 8 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
10 | 2, 6, 9 | 3bitri 296 | 1 ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2713 ∀wral 3061 {crab 3403 ∩ cin 3897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rab 3404 df-v 3443 df-in 3905 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |