![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-reabeq | Structured version Visualization version GIF version |
Description: Relative form of eqabb 2878. (Contributed by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
bj-reabeq | ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4324 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = (𝑉 ∩ {𝑥 ∣ 𝜑}) | |
2 | 1 | eqeq2i 2747 | . 2 ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ (𝑉 ∩ 𝐴) = (𝑉 ∩ {𝑥 ∣ 𝜑})) |
3 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfab1 2904 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
5 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑥𝑉 | |
6 | 3, 4, 5 | bj-rcleqf 37007 | . 2 ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ {𝑥 ∣ 𝜑}) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
7 | abid 2715 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
8 | 7 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
9 | 8 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
10 | 2, 6, 9 | 3bitri 297 | 1 ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ∈ wcel 2105 {cab 2711 ∀wral 3058 {crab 3432 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rab 3433 df-v 3479 df-in 3969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |