Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-reabeq Structured version   Visualization version   GIF version

Theorem bj-reabeq 36535
Description: Relative form of eqabb 2865. (Contributed by BJ, 27-Dec-2023.)
Assertion
Ref Expression
bj-reabeq ((𝑉𝐴) = {𝑥𝑉𝜑} ↔ ∀𝑥𝑉 (𝑥𝐴𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-reabeq
StepHypRef Expression
1 dfrab3 4302 . . 3 {𝑥𝑉𝜑} = (𝑉 ∩ {𝑥𝜑})
21eqeq2i 2738 . 2 ((𝑉𝐴) = {𝑥𝑉𝜑} ↔ (𝑉𝐴) = (𝑉 ∩ {𝑥𝜑}))
3 nfcv 2892 . . 3 𝑥𝐴
4 nfab1 2894 . . 3 𝑥{𝑥𝜑}
5 nfcv 2892 . . 3 𝑥𝑉
63, 4, 5bj-rcleqf 36533 . 2 ((𝑉𝐴) = (𝑉 ∩ {𝑥𝜑}) ↔ ∀𝑥𝑉 (𝑥𝐴𝑥 ∈ {𝑥𝜑}))
7 abid 2706 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
87bibi2i 336 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
98ralbii 3083 . 2 (∀𝑥𝑉 (𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥𝑉 (𝑥𝐴𝜑))
102, 6, 93bitri 296 1 ((𝑉𝐴) = {𝑥𝑉𝜑} ↔ ∀𝑥𝑉 (𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  {cab 2702  wral 3051  {crab 3419  cin 3938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rab 3420  df-v 3465  df-in 3946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator