| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version | ||
| Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4108 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 2 | un0 4344 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | 1, 2 | eqtri 2754 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 |
| This theorem is referenced by: nlim2 8405 pwmndid 18841 pwmnd 18842 psdmullem 22078 sltlpss 27851 slelss 27852 mulsrid 28050 mulsproplem5 28057 mulsproplem6 28058 mulsproplem7 28059 mulsproplem8 28060 coprprop 32675 fzodif1 32770 cycpmrn 33107 bj-pr22val 37052 bj-snfromadj 37077 tfsconcat0i 43377 fiiuncl 45101 founiiun0 45226 infxrpnf 45483 prsal 46355 meadjun 46499 caragenuncllem 46549 carageniuncllem1 46558 hoidmvle 46637 iscnrm3rlem1 48970 |
| Copyright terms: Public domain | W3C validator |