![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version |
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4168 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
2 | un0 4400 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
3 | 1, 2 | eqtri 2763 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 |
This theorem is referenced by: nlim2 8527 pwmndid 18962 pwmnd 18963 psdmullem 22187 sltlpss 27960 slelss 27961 mulsrid 28154 mulsproplem5 28161 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 coprprop 32714 fzodif1 32801 cycpmrn 33146 bj-pr22val 37002 bj-snfromadj 37027 metakunt17 42203 tfsconcat0i 43335 fiiuncl 45005 founiiun0 45133 infxrpnf 45396 prsal 46274 meadjun 46418 caragenuncllem 46468 carageniuncllem1 46477 hoidmvle 46556 iscnrm3rlem1 48737 |
Copyright terms: Public domain | W3C validator |