MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0un Structured version   Visualization version   GIF version

Theorem 0un 4349
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0un (∅ ∪ 𝐴) = 𝐴

Proof of Theorem 0un
StepHypRef Expression
1 uncom 4111 . 2 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
2 un0 4347 . 2 (𝐴 ∪ ∅) = 𝐴
31, 2eqtri 2752 1 (∅ ∪ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3903  c0 4286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-dif 3908  df-un 3910  df-nul 4287
This theorem is referenced by:  nlim2  8415  pwmndid  18828  pwmnd  18829  psdmullem  22068  sltlpss  27840  slelss  27841  mulsrid  28039  mulsproplem5  28046  mulsproplem6  28047  mulsproplem7  28048  mulsproplem8  28049  coprprop  32655  fzodif1  32748  cycpmrn  33098  bj-pr22val  36992  bj-snfromadj  37017  tfsconcat0i  43318  fiiuncl  45043  founiiun0  45168  infxrpnf  45426  prsal  46300  meadjun  46444  caragenuncllem  46494  carageniuncllem1  46503  hoidmvle  46582  iscnrm3rlem1  48925
  Copyright terms: Public domain W3C validator