MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0un Structured version   Visualization version   GIF version

Theorem 0un 4392
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0un (∅ ∪ 𝐴) = 𝐴

Proof of Theorem 0un
StepHypRef Expression
1 uncom 4153 . 2 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
2 un0 4390 . 2 (𝐴 ∪ ∅) = 𝐴
31, 2eqtri 2760 1 (∅ ∪ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3946  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3951  df-un 3953  df-nul 4323
This theorem is referenced by:  nlim2  8489  pwmndid  18816  pwmnd  18817  sltlpss  27398  mulsrid  27566  mulsproplem5  27573  mulsproplem6  27574  mulsproplem7  27575  mulsproplem8  27576  coprprop  31916  fzodif1  31999  cycpmrn  32297  bj-pr22val  35895  bj-snfromadj  35920  metakunt17  40996  tfsconcat0i  42085  fiiuncl  43742  founiiun0  43878  infxrpnf  44146  prsal  45024  meadjun  45168  caragenuncllem  45218  carageniuncllem1  45227  hoidmvle  45306  iscnrm3rlem1  47563
  Copyright terms: Public domain W3C validator