| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version | ||
| Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4111 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 2 | un0 4347 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3903 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-nul 4287 |
| This theorem is referenced by: nlim2 8415 pwmndid 18828 pwmnd 18829 psdmullem 22068 sltlpss 27840 slelss 27841 mulsrid 28039 mulsproplem5 28046 mulsproplem6 28047 mulsproplem7 28048 mulsproplem8 28049 coprprop 32655 fzodif1 32748 cycpmrn 33098 bj-pr22val 36992 bj-snfromadj 37017 tfsconcat0i 43318 fiiuncl 45043 founiiun0 45168 infxrpnf 45426 prsal 46300 meadjun 46444 caragenuncllem 46494 carageniuncllem1 46503 hoidmvle 46582 iscnrm3rlem1 48925 |
| Copyright terms: Public domain | W3C validator |