Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version |
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4092 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
2 | un0 4330 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3890 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 |
This theorem is referenced by: pwmndid 18573 pwmnd 18574 coprprop 31028 fzodif1 31110 cycpmrn 31406 sltlpss 34083 bj-pr22val 35205 metakunt17 40138 fiiuncl 42583 founiiun0 42698 infxrpnf 42957 prsal 43830 meadjun 43971 caragenuncllem 44021 carageniuncllem1 44030 hoidmvle 44109 iscnrm3rlem1 46203 |
Copyright terms: Public domain | W3C validator |