MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0un Structured version   Visualization version   GIF version

Theorem 0un 4359
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0un (∅ ∪ 𝐴) = 𝐴

Proof of Theorem 0un
StepHypRef Expression
1 uncom 4121 . 2 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
2 un0 4357 . 2 (𝐴 ∪ ∅) = 𝐴
31, 2eqtri 2752 1 (∅ ∪ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3912  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297
This theorem is referenced by:  nlim2  8454  pwmndid  18863  pwmnd  18864  psdmullem  22052  sltlpss  27819  slelss  27820  mulsrid  28016  mulsproplem5  28023  mulsproplem6  28024  mulsproplem7  28025  mulsproplem8  28026  coprprop  32622  fzodif1  32715  cycpmrn  33100  bj-pr22val  37007  bj-snfromadj  37032  tfsconcat0i  43334  fiiuncl  45059  founiiun0  45184  infxrpnf  45442  prsal  46316  meadjun  46460  caragenuncllem  46510  carageniuncllem1  46519  hoidmvle  46598  iscnrm3rlem1  48928
  Copyright terms: Public domain W3C validator