MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0un Structured version   Visualization version   GIF version

Theorem 0un 4323
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0un (∅ ∪ 𝐴) = 𝐴

Proof of Theorem 0un
StepHypRef Expression
1 uncom 4083 . 2 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
2 un0 4321 . 2 (𝐴 ∪ ∅) = 𝐴
31, 2eqtri 2766 1 (∅ ∪ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254
This theorem is referenced by:  pwmndid  18490  pwmnd  18491  coprprop  30934  fzodif1  31016  cycpmrn  31312  sltlpss  34014  bj-pr22val  35136  metakunt17  40069  fiiuncl  42502  founiiun0  42617  infxrpnf  42876  prsal  43749  meadjun  43890  caragenuncllem  43940  carageniuncllem1  43949  hoidmvle  44028  iscnrm3rlem1  46122
  Copyright terms: Public domain W3C validator