| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version | ||
| Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4124 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 2 | un0 4360 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 |
| This theorem is referenced by: nlim2 8457 pwmndid 18870 pwmnd 18871 psdmullem 22059 sltlpss 27826 slelss 27827 mulsrid 28023 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 coprprop 32629 fzodif1 32722 cycpmrn 33107 bj-pr22val 37014 bj-snfromadj 37039 tfsconcat0i 43341 fiiuncl 45066 founiiun0 45191 infxrpnf 45449 prsal 46323 meadjun 46467 caragenuncllem 46517 carageniuncllem1 46526 hoidmvle 46605 iscnrm3rlem1 48932 |
| Copyright terms: Public domain | W3C validator |