| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version | ||
| Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4107 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 2 | un0 4343 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | 1, 2 | eqtri 2756 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 |
| This theorem is referenced by: nlim2 8411 pwmndid 18846 pwmnd 18847 psdmullem 22081 sltlpss 27854 slelss 27855 mulsrid 28053 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 coprprop 32684 fzodif1 32779 indconst0 32846 cycpmrn 33119 bj-pr22val 37084 bj-snfromadj 37109 tfsconcat0i 43462 fiiuncl 45186 founiiun0 45311 infxrpnf 45568 prsal 46440 meadjun 46584 caragenuncllem 46634 carageniuncllem1 46643 hoidmvle 46722 iscnrm3rlem1 49064 |
| Copyright terms: Public domain | W3C validator |