| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version | ||
| Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4133 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
| 2 | un0 4369 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 3 | 1, 2 | eqtri 2758 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 |
| This theorem is referenced by: nlim2 8502 pwmndid 18914 pwmnd 18915 psdmullem 22103 sltlpss 27871 slelss 27872 mulsrid 28068 mulsproplem5 28075 mulsproplem6 28076 mulsproplem7 28077 mulsproplem8 28078 coprprop 32676 fzodif1 32769 cycpmrn 33154 bj-pr22val 37037 bj-snfromadj 37062 metakunt17 42234 tfsconcat0i 43369 fiiuncl 45089 founiiun0 45214 infxrpnf 45473 prsal 46347 meadjun 46491 caragenuncllem 46541 carageniuncllem1 46550 hoidmvle 46629 iscnrm3rlem1 48914 |
| Copyright terms: Public domain | W3C validator |