![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0un | Structured version Visualization version GIF version |
Description: The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0un | ⊢ (∅ ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4181 | . 2 ⊢ (∅ ∪ 𝐴) = (𝐴 ∪ ∅) | |
2 | un0 4417 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ (∅ ∪ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 |
This theorem is referenced by: nlim2 8546 pwmndid 18971 pwmnd 18972 psdmullem 22192 sltlpss 27963 slelss 27964 mulsrid 28157 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 coprprop 32711 fzodif1 32798 cycpmrn 33136 bj-pr22val 36985 bj-snfromadj 37010 metakunt17 42178 tfsconcat0i 43307 fiiuncl 44967 founiiun0 45097 infxrpnf 45361 prsal 46239 meadjun 46383 caragenuncllem 46433 carageniuncllem1 46442 hoidmvle 46521 iscnrm3rlem1 48620 |
Copyright terms: Public domain | W3C validator |