![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upln0 | Structured version Visualization version GIF version |
Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1upln0 | ⊢ ⦅𝐴⦆ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-1upl 36981 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
2 | 0nep0 5364 | . . . 4 ⊢ ∅ ≠ {∅} | |
3 | 2 | necomi 2993 | . . 3 ⊢ {∅} ≠ ∅ |
4 | bj-tagn0 36962 | . . 3 ⊢ tag 𝐴 ≠ ∅ | |
5 | xpnz 6181 | . . . 4 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) ↔ ({∅} × tag 𝐴) ≠ ∅) | |
6 | 5 | biimpi 216 | . . 3 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) → ({∅} × tag 𝐴) ≠ ∅) |
7 | 3, 4, 6 | mp2an 692 | . 2 ⊢ ({∅} × tag 𝐴) ≠ ∅ |
8 | 1, 7 | eqnetri 3009 | 1 ⊢ ⦅𝐴⦆ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ≠ wne 2938 ∅c0 4339 {csn 4631 × cxp 5687 tag bj-ctag 36957 ⦅bj-c1upl 36980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-bj-tag 36958 df-bj-1upl 36981 |
This theorem is referenced by: bj-2upln0 37006 |
Copyright terms: Public domain | W3C validator |