| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upln0 | Structured version Visualization version GIF version | ||
| Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1upln0 | ⊢ ⦅𝐴⦆ ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-1upl 37021 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 2 | 0nep0 5333 | . . . 4 ⊢ ∅ ≠ {∅} | |
| 3 | 2 | necomi 2987 | . . 3 ⊢ {∅} ≠ ∅ |
| 4 | bj-tagn0 37002 | . . 3 ⊢ tag 𝐴 ≠ ∅ | |
| 5 | xpnz 6153 | . . . 4 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) ↔ ({∅} × tag 𝐴) ≠ ∅) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) → ({∅} × tag 𝐴) ≠ ∅) |
| 7 | 3, 4, 6 | mp2an 692 | . 2 ⊢ ({∅} × tag 𝐴) ≠ ∅ |
| 8 | 1, 7 | eqnetri 3003 | 1 ⊢ ⦅𝐴⦆ ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2933 ∅c0 4313 {csn 4606 × cxp 5657 tag bj-ctag 36997 ⦅bj-c1upl 37020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-bj-tag 36998 df-bj-1upl 37021 |
| This theorem is referenced by: bj-2upln0 37046 |
| Copyright terms: Public domain | W3C validator |