| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upln0 | Structured version Visualization version GIF version | ||
| Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1upln0 | ⊢ ⦅𝐴⦆ ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-1upl 37042 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 2 | 0nep0 5294 | . . . 4 ⊢ ∅ ≠ {∅} | |
| 3 | 2 | necomi 2982 | . . 3 ⊢ {∅} ≠ ∅ |
| 4 | bj-tagn0 37023 | . . 3 ⊢ tag 𝐴 ≠ ∅ | |
| 5 | xpnz 6106 | . . . 4 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) ↔ ({∅} × tag 𝐴) ≠ ∅) | |
| 6 | 5 | biimpi 216 | . . 3 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) → ({∅} × tag 𝐴) ≠ ∅) |
| 7 | 3, 4, 6 | mp2an 692 | . 2 ⊢ ({∅} × tag 𝐴) ≠ ∅ |
| 8 | 1, 7 | eqnetri 2998 | 1 ⊢ ⦅𝐴⦆ ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ≠ wne 2928 ∅c0 4280 {csn 4573 × cxp 5612 tag bj-ctag 37018 ⦅bj-c1upl 37041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-bj-tag 37019 df-bj-1upl 37042 |
| This theorem is referenced by: bj-2upln0 37067 |
| Copyright terms: Public domain | W3C validator |