Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upln0 | Structured version Visualization version GIF version |
Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1upln0 | ⊢ ⦅𝐴⦆ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-1upl 35115 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
2 | 0nep0 5275 | . . . 4 ⊢ ∅ ≠ {∅} | |
3 | 2 | necomi 2997 | . . 3 ⊢ {∅} ≠ ∅ |
4 | bj-tagn0 35096 | . . 3 ⊢ tag 𝐴 ≠ ∅ | |
5 | xpnz 6051 | . . . 4 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) ↔ ({∅} × tag 𝐴) ≠ ∅) | |
6 | 5 | biimpi 215 | . . 3 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) → ({∅} × tag 𝐴) ≠ ∅) |
7 | 3, 4, 6 | mp2an 688 | . 2 ⊢ ({∅} × tag 𝐴) ≠ ∅ |
8 | 1, 7 | eqnetri 3013 | 1 ⊢ ⦅𝐴⦆ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ≠ wne 2942 ∅c0 4253 {csn 4558 × cxp 5578 tag bj-ctag 35091 ⦅bj-c1upl 35114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-bj-tag 35092 df-bj-1upl 35115 |
This theorem is referenced by: bj-2upln0 35140 |
Copyright terms: Public domain | W3C validator |