Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1upln0 | Structured version Visualization version GIF version |
Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1upln0 | ⊢ ⦅𝐴⦆ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-1upl 35188 | . 2 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
2 | 0nep0 5280 | . . . 4 ⊢ ∅ ≠ {∅} | |
3 | 2 | necomi 2998 | . . 3 ⊢ {∅} ≠ ∅ |
4 | bj-tagn0 35169 | . . 3 ⊢ tag 𝐴 ≠ ∅ | |
5 | xpnz 6062 | . . . 4 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) ↔ ({∅} × tag 𝐴) ≠ ∅) | |
6 | 5 | biimpi 215 | . . 3 ⊢ (({∅} ≠ ∅ ∧ tag 𝐴 ≠ ∅) → ({∅} × tag 𝐴) ≠ ∅) |
7 | 3, 4, 6 | mp2an 689 | . 2 ⊢ ({∅} × tag 𝐴) ≠ ∅ |
8 | 1, 7 | eqnetri 3014 | 1 ⊢ ⦅𝐴⦆ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ≠ wne 2943 ∅c0 4256 {csn 4561 × cxp 5587 tag bj-ctag 35164 ⦅bj-c1upl 35187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-bj-tag 35165 df-bj-1upl 35188 |
This theorem is referenced by: bj-2upln0 35213 |
Copyright terms: Public domain | W3C validator |