Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1083 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1083.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1083.8 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1083 | ⊢ (𝑓 ∈ 𝐾 ↔ ∃𝑛𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3072 | . 2 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
2 | bnj1083.8 | . . 3 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
3 | 2 | abeq2i 2877 | . 2 ⊢ (𝑓 ∈ 𝐾 ↔ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
4 | bnj1083.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
5 | bnj252 32678 | . . . 4 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
6 | 4, 5 | bitri 274 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
7 | 6 | exbii 1854 | . 2 ⊢ (∃𝑛𝜒 ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
8 | 1, 3, 7 | 3bitr4i 303 | 1 ⊢ (𝑓 ∈ 𝐾 ↔ ∃𝑛𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∃wex 1786 ∈ wcel 2110 {cab 2717 ∃wrex 3067 Fn wfn 6427 ∧ w-bnj17 32661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rex 3072 df-bnj17 32662 |
This theorem is referenced by: bnj1121 32961 bnj1145 32969 |
Copyright terms: Public domain | W3C validator |