Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1421 Structured version   Visualization version   GIF version

Theorem bnj1421 32424
Description: Technical lemma for bnj60 32444. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1421.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1421.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1421.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1421.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1421.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1421.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1421.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1421.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1421.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1421.10 𝑃 = 𝐻
bnj1421.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1421.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1421.13 (𝜒 → Fun 𝑃)
bnj1421.14 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1421.15 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1421 (𝜒 → Fun 𝑄)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑦,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1421
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1421.13 . . . 4 (𝜒 → Fun 𝑃)
2 vex 3444 . . . . 5 𝑥 ∈ V
3 fvex 6658 . . . . 5 (𝐺𝑍) ∈ V
42, 3funsn 6377 . . . 4 Fun {⟨𝑥, (𝐺𝑍)⟩}
51, 4jctir 524 . . 3 (𝜒 → (Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺𝑍)⟩}))
6 bnj1421.15 . . . . 5 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
73dmsnop 6040 . . . . . 6 dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥}
87a1i 11 . . . . 5 (𝜒 → dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥})
96, 8ineq12d 4140 . . . 4 (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}))
10 bnj1421.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
11 bnj1421.6 . . . . . . . 8 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
1211simplbi 501 . . . . . . 7 (𝜓𝑅 FrSe 𝐴)
1310, 12bnj835 32140 . . . . . 6 (𝜒𝑅 FrSe 𝐴)
14 biid 264 . . . . . . . 8 (𝑅 FrSe 𝐴𝑅 FrSe 𝐴)
15 biid 264 . . . . . . . 8 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
16 biid 264 . . . . . . . 8 (∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))
17 biid 264 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴 ∧ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴𝑥𝐴 ∧ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))))
18 eqid 2798 . . . . . . . 8 ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅))
1914, 15, 16, 17, 18bnj1417 32423 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
20 disjsn 4607 . . . . . . . 8 (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
2120ralbii 3133 . . . . . . 7 (∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
2219, 21sylibr 237 . . . . . 6 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
2313, 22syl 17 . . . . 5 (𝜒 → ∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
24 bnj1421.5 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2524, 10bnj1212 32181 . . . . 5 (𝜒𝑥𝐴)
2623, 25bnj1294 32199 . . . 4 (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
279, 26eqtrd 2833 . . 3 (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ∅)
28 funun 6370 . . 3 (((Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺𝑍)⟩}) ∧ (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ∅) → Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
295, 27, 28syl2anc 587 . 2 (𝜒 → Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
30 bnj1421.12 . . 3 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3130funeqi 6345 . 2 (Fun 𝑄 ↔ Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
3229, 31sylibr 237 1 (𝜒 → Fun 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  {crab 3110  [wsbc 3720  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cop 4531   cuni 4800   ciun 4881   class class class wbr 5030  dom cdm 5519  cres 5521  Fun wfun 6318   Fn wfn 6319  cfv 6324   predc-bnj14 32068   FrSe w-bnj15 32072   trClc-bnj18 32074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-bnj17 32067  df-bnj14 32069  df-bnj13 32071  df-bnj15 32073  df-bnj18 32075  df-bnj19 32077
This theorem is referenced by:  bnj1312  32440
  Copyright terms: Public domain W3C validator