![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1421 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 34372. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1421.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1421.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1421.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1421.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1421.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1421.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1421.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1421.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1421.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1421.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1421.11 | ⊢ 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1421.12 | ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
bnj1421.13 | ⊢ (𝜒 → Fun 𝑃) |
bnj1421.14 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1421.15 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj1421 | ⊢ (𝜒 → Fun 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1421.13 | . . . 4 ⊢ (𝜒 → Fun 𝑃) | |
2 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | fvex 6904 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
4 | 2, 3 | funsn 6601 | . . . 4 ⊢ Fun {⟨𝑥, (𝐺‘𝑍)⟩} |
5 | 1, 4 | jctir 520 | . . 3 ⊢ (𝜒 → (Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺‘𝑍)⟩})) |
6 | bnj1421.15 | . . . . 5 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
7 | 3 | dmsnop 6215 | . . . . . 6 ⊢ dom {⟨𝑥, (𝐺‘𝑍)⟩} = {𝑥} |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜒 → dom {⟨𝑥, (𝐺‘𝑍)⟩} = {𝑥}) |
9 | 6, 8 | ineq12d 4213 | . . . 4 ⊢ (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺‘𝑍)⟩}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥})) |
10 | bnj1421.7 | . . . . . . 7 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
11 | bnj1421.6 | . . . . . . . 8 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
12 | 11 | simplbi 497 | . . . . . . 7 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
13 | 10, 12 | bnj835 34069 | . . . . . 6 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
14 | biid 261 | . . . . . . . 8 ⊢ (𝑅 FrSe 𝐴 ↔ 𝑅 FrSe 𝐴) | |
15 | biid 261 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
16 | biid 261 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
17 | biid 261 | . . . . . . . 8 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))) | |
18 | eqid 2731 | . . . . . . . 8 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) | |
19 | 14, 15, 16, 17, 18 | bnj1417 34351 | . . . . . . 7 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
20 | disjsn 4715 | . . . . . . . 8 ⊢ (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
21 | 20 | ralbii 3092 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
22 | 19, 21 | sylibr 233 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
23 | 13, 22 | syl 17 | . . . . 5 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
24 | bnj1421.5 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
25 | 24, 10 | bnj1212 34109 | . . . . 5 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
26 | 23, 25 | bnj1294 34127 | . . . 4 ⊢ (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
27 | 9, 26 | eqtrd 2771 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺‘𝑍)⟩}) = ∅) |
28 | funun 6594 | . . 3 ⊢ (((Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺‘𝑍)⟩}) ∧ (dom 𝑃 ∩ dom {⟨𝑥, (𝐺‘𝑍)⟩}) = ∅) → Fun (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩})) | |
29 | 5, 27, 28 | syl2anc 583 | . 2 ⊢ (𝜒 → Fun (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩})) |
30 | bnj1421.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) | |
31 | 30 | funeqi 6569 | . 2 ⊢ (Fun 𝑄 ↔ Fun (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩})) |
32 | 29, 31 | sylibr 233 | 1 ⊢ (𝜒 → Fun 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3431 [wsbc 3777 ∪ cun 3946 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 ⟨cop 4634 ∪ cuni 4908 ∪ ciun 4997 class class class wbr 5148 dom cdm 5676 ↾ cres 5678 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 predc-bnj14 33998 FrSe w-bnj15 34002 trClc-bnj18 34004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-reg 9590 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7859 df-1o 8469 df-bnj17 33997 df-bnj14 33999 df-bnj13 34001 df-bnj15 34003 df-bnj18 34005 df-bnj19 34007 |
This theorem is referenced by: bnj1312 34368 |
Copyright terms: Public domain | W3C validator |