![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1421 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 35069. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1421.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1421.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1421.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1421.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1421.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1421.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1421.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1421.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1421.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1421.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1421.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1421.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1421.13 | ⊢ (𝜒 → Fun 𝑃) |
bnj1421.14 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1421.15 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj1421 | ⊢ (𝜒 → Fun 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1421.13 | . . . 4 ⊢ (𝜒 → Fun 𝑃) | |
2 | vex 3485 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | fvex 6927 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
4 | 2, 3 | funsn 6627 | . . . 4 ⊢ Fun {〈𝑥, (𝐺‘𝑍)〉} |
5 | 1, 4 | jctir 520 | . . 3 ⊢ (𝜒 → (Fun 𝑃 ∧ Fun {〈𝑥, (𝐺‘𝑍)〉})) |
6 | bnj1421.15 | . . . . 5 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
7 | 3 | dmsnop 6244 | . . . . . 6 ⊢ dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥} |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜒 → dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥}) |
9 | 6, 8 | ineq12d 4232 | . . . 4 ⊢ (𝜒 → (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥})) |
10 | bnj1421.7 | . . . . . . 7 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
11 | bnj1421.6 | . . . . . . . 8 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
12 | 11 | simplbi 497 | . . . . . . 7 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
13 | 10, 12 | bnj835 34766 | . . . . . 6 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
14 | biid 261 | . . . . . . . 8 ⊢ (𝑅 FrSe 𝐴 ↔ 𝑅 FrSe 𝐴) | |
15 | biid 261 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
16 | biid 261 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
17 | biid 261 | . . . . . . . 8 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))) | |
18 | eqid 2737 | . . . . . . . 8 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) | |
19 | 14, 15, 16, 17, 18 | bnj1417 35048 | . . . . . . 7 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
20 | disjsn 4719 | . . . . . . . 8 ⊢ (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
21 | 20 | ralbii 3093 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
22 | 19, 21 | sylibr 234 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
23 | 13, 22 | syl 17 | . . . . 5 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
24 | bnj1421.5 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
25 | 24, 10 | bnj1212 34806 | . . . . 5 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
26 | 23, 25 | bnj1294 34824 | . . . 4 ⊢ (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
27 | 9, 26 | eqtrd 2777 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ∅) |
28 | funun 6620 | . . 3 ⊢ (((Fun 𝑃 ∧ Fun {〈𝑥, (𝐺‘𝑍)〉}) ∧ (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ∅) → Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
29 | 5, 27, 28 | syl2anc 584 | . 2 ⊢ (𝜒 → Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
30 | bnj1421.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
31 | 30 | funeqi 6595 | . 2 ⊢ (Fun 𝑄 ↔ Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
32 | 29, 31 | sylibr 234 | 1 ⊢ (𝜒 → Fun 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∃wex 1778 ∈ wcel 2108 {cab 2714 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 [wsbc 3794 ∪ cun 3964 ∩ cin 3965 ⊆ wss 3966 ∅c0 4342 {csn 4634 〈cop 4640 ∪ cuni 4915 ∪ ciun 4999 class class class wbr 5151 dom cdm 5693 ↾ cres 5695 Fun wfun 6563 Fn wfn 6564 ‘cfv 6569 predc-bnj14 34695 FrSe w-bnj15 34699 trClc-bnj18 34701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-reg 9639 ax-inf2 9688 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-om 7895 df-1o 8514 df-bnj17 34694 df-bnj14 34696 df-bnj13 34698 df-bnj15 34700 df-bnj18 34702 df-bnj19 34704 |
This theorem is referenced by: bnj1312 35065 |
Copyright terms: Public domain | W3C validator |