Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1421 Structured version   Visualization version   GIF version

Theorem bnj1421 34990
Description: Technical lemma for bnj60 35010. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1421.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1421.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1421.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1421.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1421.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1421.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1421.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1421.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1421.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1421.10 𝑃 = 𝐻
bnj1421.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1421.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1421.13 (𝜒 → Fun 𝑃)
bnj1421.14 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1421.15 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1421 (𝜒 → Fun 𝑄)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑦,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1421
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1421.13 . . . 4 (𝜒 → Fun 𝑃)
2 vex 3467 . . . . 5 𝑥 ∈ V
3 fvex 6898 . . . . 5 (𝐺𝑍) ∈ V
42, 3funsn 6598 . . . 4 Fun {⟨𝑥, (𝐺𝑍)⟩}
51, 4jctir 520 . . 3 (𝜒 → (Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺𝑍)⟩}))
6 bnj1421.15 . . . . 5 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
73dmsnop 6216 . . . . . 6 dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥}
87a1i 11 . . . . 5 (𝜒 → dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥})
96, 8ineq12d 4201 . . . 4 (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}))
10 bnj1421.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
11 bnj1421.6 . . . . . . . 8 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
1211simplbi 497 . . . . . . 7 (𝜓𝑅 FrSe 𝐴)
1310, 12bnj835 34707 . . . . . 6 (𝜒𝑅 FrSe 𝐴)
14 biid 261 . . . . . . . 8 (𝑅 FrSe 𝐴𝑅 FrSe 𝐴)
15 biid 261 . . . . . . . 8 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
16 biid 261 . . . . . . . 8 (∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))
17 biid 261 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴 ∧ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴𝑥𝐴 ∧ ∀𝑧𝐴 (𝑧𝑅𝑥[𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))))
18 eqid 2734 . . . . . . . 8 ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅))
1914, 15, 16, 17, 18bnj1417 34989 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
20 disjsn 4691 . . . . . . . 8 (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
2120ralbii 3081 . . . . . . 7 (∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
2219, 21sylibr 234 . . . . . 6 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
2313, 22syl 17 . . . . 5 (𝜒 → ∀𝑥𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
24 bnj1421.5 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2524, 10bnj1212 34747 . . . . 5 (𝜒𝑥𝐴)
2623, 25bnj1294 34765 . . . 4 (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅)
279, 26eqtrd 2769 . . 3 (𝜒 → (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ∅)
28 funun 6591 . . 3 (((Fun 𝑃 ∧ Fun {⟨𝑥, (𝐺𝑍)⟩}) ∧ (dom 𝑃 ∩ dom {⟨𝑥, (𝐺𝑍)⟩}) = ∅) → Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
295, 27, 28syl2anc 584 . 2 (𝜒 → Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
30 bnj1421.12 . . 3 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3130funeqi 6566 . 2 (Fun 𝑄 ↔ Fun (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
3229, 31sylibr 234 1 (𝜒 → Fun 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wne 2931  wral 3050  wrex 3059  {crab 3419  [wsbc 3770  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  cop 4612   cuni 4887   ciun 4971   class class class wbr 5123  dom cdm 5665  cres 5667  Fun wfun 6534   Fn wfn 6535  cfv 6540   predc-bnj14 34636   FrSe w-bnj15 34640   trClc-bnj18 34642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-reg 9613  ax-inf2 9662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7869  df-1o 8487  df-bnj17 34635  df-bnj14 34637  df-bnj13 34639  df-bnj15 34641  df-bnj18 34643  df-bnj19 34645
This theorem is referenced by:  bnj1312  35006
  Copyright terms: Public domain W3C validator