| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1421 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35010. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1421.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1421.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1421.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1421.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1421.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1421.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1421.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1421.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1421.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1421.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1421.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1421.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| bnj1421.13 | ⊢ (𝜒 → Fun 𝑃) |
| bnj1421.14 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| bnj1421.15 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
| Ref | Expression |
|---|---|
| bnj1421 | ⊢ (𝜒 → Fun 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1421.13 | . . . 4 ⊢ (𝜒 → Fun 𝑃) | |
| 2 | vex 3467 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | fvex 6898 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
| 4 | 2, 3 | funsn 6598 | . . . 4 ⊢ Fun {〈𝑥, (𝐺‘𝑍)〉} |
| 5 | 1, 4 | jctir 520 | . . 3 ⊢ (𝜒 → (Fun 𝑃 ∧ Fun {〈𝑥, (𝐺‘𝑍)〉})) |
| 6 | bnj1421.15 | . . . . 5 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
| 7 | 3 | dmsnop 6216 | . . . . . 6 ⊢ dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥} |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜒 → dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥}) |
| 9 | 6, 8 | ineq12d 4201 | . . . 4 ⊢ (𝜒 → (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥})) |
| 10 | bnj1421.7 | . . . . . . 7 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 11 | bnj1421.6 | . . . . . . . 8 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 12 | 11 | simplbi 497 | . . . . . . 7 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
| 13 | 10, 12 | bnj835 34707 | . . . . . 6 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
| 14 | biid 261 | . . . . . . . 8 ⊢ (𝑅 FrSe 𝐴 ↔ 𝑅 FrSe 𝐴) | |
| 15 | biid 261 | . . . . . . . 8 ⊢ (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
| 16 | biid 261 | . . . . . . . 8 ⊢ (∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
| 17 | biid 261 | . . . . . . . 8 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧𝑅𝑥 → [𝑧 / 𝑥] ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)))) | |
| 18 | eqid 2734 | . . . . . . . 8 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) = ( pred(𝑥, 𝐴, 𝑅) ∪ ∪ 𝑧 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑧, 𝐴, 𝑅)) | |
| 19 | 14, 15, 16, 17, 18 | bnj1417 34989 | . . . . . . 7 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
| 20 | disjsn 4691 | . . . . . . . 8 ⊢ (( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) | |
| 21 | 20 | ralbii 3081 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅)) |
| 22 | 19, 21 | sylibr 234 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
| 23 | 13, 22 | syl 17 | . . . . 5 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
| 24 | bnj1421.5 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 25 | 24, 10 | bnj1212 34747 | . . . . 5 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
| 26 | 23, 25 | bnj1294 34765 | . . . 4 ⊢ (𝜒 → ( trCl(𝑥, 𝐴, 𝑅) ∩ {𝑥}) = ∅) |
| 27 | 9, 26 | eqtrd 2769 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ∅) |
| 28 | funun 6591 | . . 3 ⊢ (((Fun 𝑃 ∧ Fun {〈𝑥, (𝐺‘𝑍)〉}) ∧ (dom 𝑃 ∩ dom {〈𝑥, (𝐺‘𝑍)〉}) = ∅) → Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
| 29 | 5, 27, 28 | syl2anc 584 | . 2 ⊢ (𝜒 → Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
| 30 | bnj1421.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 31 | 30 | funeqi 6566 | . 2 ⊢ (Fun 𝑄 ↔ Fun (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
| 32 | 29, 31 | sylibr 234 | 1 ⊢ (𝜒 → Fun 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 {crab 3419 [wsbc 3770 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 ∪ cuni 4887 ∪ ciun 4971 class class class wbr 5123 dom cdm 5665 ↾ cres 5667 Fun wfun 6534 Fn wfn 6535 ‘cfv 6540 predc-bnj14 34636 FrSe w-bnj15 34640 trClc-bnj18 34642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-reg 9613 ax-inf2 9662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7869 df-1o 8487 df-bnj17 34635 df-bnj14 34637 df-bnj13 34639 df-bnj15 34641 df-bnj18 34643 df-bnj19 34645 |
| This theorem is referenced by: bnj1312 35006 |
| Copyright terms: Public domain | W3C validator |