Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj540 Structured version   Visualization version   GIF version

Theorem bnj540 31479
Description: Technical lemma for bnj852 31508. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj540.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj540.2 (𝜓″[𝐺 / 𝑓]𝜓)
bnj540.3 𝐺 ∈ V
Assertion
Ref Expression
bnj540 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺,𝑖,𝑦   𝑓,𝑁   𝑅,𝑓
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝑁(𝑦,𝑖)   𝜓″(𝑦,𝑓,𝑖)

Proof of Theorem bnj540
StepHypRef Expression
1 bnj540.2 . 2 (𝜓″[𝐺 / 𝑓]𝜓)
2 bnj540.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
32sbcbii 3689 . . 3 ([𝐺 / 𝑓]𝜓[𝐺 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj540.3 . . . 4 𝐺 ∈ V
54bnj538 31327 . . 3 ([𝐺 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sbcimg 3675 . . . . 5 (𝐺 ∈ V → ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
74, 6ax-mp 5 . . . 4 ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
87ralbii 3161 . . 3 (∀𝑖 ∈ ω [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
93, 5, 83bitri 289 . 2 ([𝐺 / 𝑓]𝜓 ↔ ∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
104bnj525 31325 . . . 4 ([𝐺 / 𝑓]suc 𝑖𝑁 ↔ suc 𝑖𝑁)
11 fveq1 6410 . . . . . 6 (𝑓 = 𝐺 → (𝑓‘suc 𝑖) = (𝐺‘suc 𝑖))
12 fveq1 6410 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑖) = (𝐺𝑖))
1312bnj1113 31373 . . . . . 6 (𝑓 = 𝐺 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1411, 13eqeq12d 2814 . . . . 5 (𝑓 = 𝐺 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
154, 14sbcie 3668 . . . 4 ([𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1610, 15imbi12i 342 . . 3 (([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
1716ralbii 3161 . 2 (∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
181, 9, 173bitri 289 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  [wsbc 3633   ciun 4710  suc csuc 5943  cfv 6101  ωcom 7299   predc-bnj14 31274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-v 3387  df-sbc 3634  df-in 3776  df-ss 3783  df-uni 4629  df-iun 4712  df-br 4844  df-iota 6064  df-fv 6109
This theorem is referenced by:  bnj580  31500  bnj607  31503
  Copyright terms: Public domain W3C validator