Proof of Theorem bnj540
| Step | Hyp | Ref
| Expression |
| 1 | | bnj540.2 |
. 2
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓) |
| 2 | | bnj540.1 |
. . . 4
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 3 | 2 | sbcbii 3827 |
. . 3
⊢
([𝐺 / 𝑓]𝜓 ↔ [𝐺 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 4 | | bnj540.3 |
. . . 4
⊢ 𝐺 ∈ V |
| 5 | 4 | bnj538 34688 |
. . 3
⊢
([𝐺 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 6 | | sbcimg 3819 |
. . . . 5
⊢ (𝐺 ∈ V → ([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 7 | 4, 6 | ax-mp 5 |
. . . 4
⊢
([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 8 | 7 | ralbii 3081 |
. . 3
⊢
(∀𝑖 ∈
ω [𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 9 | 3, 5, 8 | 3bitri 297 |
. 2
⊢
([𝐺 / 𝑓]𝜓 ↔ ∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 10 | 4 | bnj525 34686 |
. . . 4
⊢
([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 ↔ suc 𝑖 ∈ 𝑁) |
| 11 | | fveq1 6884 |
. . . . . 6
⊢ (𝑓 = 𝐺 → (𝑓‘suc 𝑖) = (𝐺‘suc 𝑖)) |
| 12 | | fveq1 6884 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (𝑓‘𝑖) = (𝐺‘𝑖)) |
| 13 | 12 | bnj1113 34733 |
. . . . . 6
⊢ (𝑓 = 𝐺 → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 14 | 11, 13 | eqeq12d 2750 |
. . . . 5
⊢ (𝑓 = 𝐺 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 15 | 4, 14 | sbcie 3812 |
. . . 4
⊢
([𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 16 | 10, 15 | imbi12i 350 |
. . 3
⊢
(([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 17 | 16 | ralbii 3081 |
. 2
⊢
(∀𝑖 ∈
ω ([𝐺 / 𝑓]suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 18 | 1, 9, 17 | 3bitri 297 |
1
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |