Proof of Theorem bnj539
Step | Hyp | Ref
| Expression |
1 | | bnj539.2 |
. 2
⊢ (𝜓′ ↔ [𝑀 / 𝑛]𝜓) |
2 | | bnj539.1 |
. . . 4
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | 2 | sbcbii 3781 |
. . 3
⊢
([𝑀 / 𝑛]𝜓 ↔ [𝑀 / 𝑛]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
4 | | bnj539.3 |
. . . . 5
⊢ 𝑀 ∈ V |
5 | 4 | bnj538 32714 |
. . . 4
⊢
([𝑀 / 𝑛]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝑀 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
6 | | sbcimg 3771 |
. . . . . . 7
⊢ (𝑀 ∈ V → ([𝑀 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑀 / 𝑛]suc 𝑖 ∈ 𝑛 → [𝑀 / 𝑛](𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
7 | 4, 6 | ax-mp 5 |
. . . . . 6
⊢
([𝑀 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑀 / 𝑛]suc 𝑖 ∈ 𝑛 → [𝑀 / 𝑛](𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
8 | | sbcel2gv 3793 |
. . . . . . . 8
⊢ (𝑀 ∈ V → ([𝑀 / 𝑛]suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑀)) |
9 | 4, 8 | ax-mp 5 |
. . . . . . 7
⊢
([𝑀 / 𝑛]suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑀) |
10 | 4 | bnj525 32712 |
. . . . . . 7
⊢
([𝑀 / 𝑛](𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
11 | 9, 10 | imbi12i 351 |
. . . . . 6
⊢
(([𝑀 / 𝑛]suc 𝑖 ∈ 𝑛 → [𝑀 / 𝑛](𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑀 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
12 | 7, 11 | bitri 274 |
. . . . 5
⊢
([𝑀 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑀 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
13 | 12 | ralbii 3093 |
. . . 4
⊢
(∀𝑖 ∈
ω [𝑀 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑀 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
14 | 5, 13 | bitri 274 |
. . 3
⊢
([𝑀 / 𝑛]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑀 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
15 | 3, 14 | bitri 274 |
. 2
⊢
([𝑀 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑀 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
16 | 1, 15 | bitri 274 |
1
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑀 → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |