Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj539 Structured version   Visualization version   GIF version

Theorem bnj539 32158
Description: Technical lemma for bnj852 32188. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj539.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj539.2 (𝜓′[𝑀 / 𝑛]𝜓)
bnj539.3 𝑀 ∈ V
Assertion
Ref Expression
bnj539 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝑖,𝑀   𝑅,𝑛   𝑖,𝑛   𝑦,𝑛
Allowed substitution hints:   𝜓(𝑦,𝑖,𝑛)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐹(𝑦,𝑖)   𝑀(𝑦,𝑛)   𝜓′(𝑦,𝑖,𝑛)

Proof of Theorem bnj539
StepHypRef Expression
1 bnj539.2 . 2 (𝜓′[𝑀 / 𝑛]𝜓)
2 bnj539.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
32sbcbii 3829 . . 3 ([𝑀 / 𝑛]𝜓[𝑀 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj539.3 . . . . 5 𝑀 ∈ V
54bnj538 32006 . . . 4 ([𝑀 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sbcimg 3820 . . . . . . 7 (𝑀 ∈ V → ([𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑀 / 𝑛]suc 𝑖𝑛[𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
74, 6ax-mp 5 . . . . . 6 ([𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑀 / 𝑛]suc 𝑖𝑛[𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
8 sbcel2gv 3841 . . . . . . . 8 (𝑀 ∈ V → ([𝑀 / 𝑛]suc 𝑖𝑛 ↔ suc 𝑖𝑀))
94, 8ax-mp 5 . . . . . . 7 ([𝑀 / 𝑛]suc 𝑖𝑛 ↔ suc 𝑖𝑀)
104bnj525 32004 . . . . . . 7 ([𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
119, 10imbi12i 353 . . . . . 6 (([𝑀 / 𝑛]suc 𝑖𝑛[𝑀 / 𝑛](𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
127, 11bitri 277 . . . . 5 ([𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
1312ralbii 3165 . . . 4 (∀𝑖 ∈ ω [𝑀 / 𝑛](suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
145, 13bitri 277 . . 3 ([𝑀 / 𝑛]𝑖 ∈ ω (suc 𝑖𝑛 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
153, 14bitri 277 . 2 ([𝑀 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
161, 15bitri 277 1 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑀 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  [wsbc 3772   ciun 4912  suc csuc 6188  cfv 6350  ωcom 7574   predc-bnj14 31953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-v 3497  df-sbc 3773
This theorem is referenced by:  bnj600  32186  bnj908  32198  bnj964  32210  bnj999  32225
  Copyright terms: Public domain W3C validator