Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brneqtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
brneqtrd.1 | ⊢ (𝜑 → ¬ 𝐴𝑅𝐵) |
brneqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
brneqtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brneqtrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐴𝑅𝐵) | |
2 | brneqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | breq2d 5082 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) |
4 | 1, 3 | mtbid 323 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |