Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brneqtrd Structured version   Visualization version   GIF version

Theorem brneqtrd 45015
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
brneqtrd.1 (𝜑 → ¬ 𝐴𝑅𝐵)
brneqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
brneqtrd (𝜑 → ¬ 𝐴𝑅𝐶)

Proof of Theorem brneqtrd
StepHypRef Expression
1 brneqtrd.1 . 2 (𝜑 → ¬ 𝐴𝑅𝐵)
2 brneqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32breq2d 5159 . 2 (𝜑 → (𝐴𝑅𝐵𝐴𝑅𝐶))
41, 3mtbid 324 1 (𝜑 → ¬ 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148
This theorem is referenced by:  rexanuz2nf  45442
  Copyright terms: Public domain W3C validator