Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brneqtrd Structured version   Visualization version   GIF version

Theorem brneqtrd 42515
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
brneqtrd.1 (𝜑 → ¬ 𝐴𝑅𝐵)
brneqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
brneqtrd (𝜑 → ¬ 𝐴𝑅𝐶)

Proof of Theorem brneqtrd
StepHypRef Expression
1 brneqtrd.1 . 2 (𝜑 → ¬ 𝐴𝑅𝐵)
2 brneqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32breq2d 5082 . 2 (𝜑 → (𝐴𝑅𝐵𝐴𝑅𝐶))
41, 3mtbid 323 1 (𝜑 → ¬ 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator