MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brstruct Structured version   Visualization version   GIF version

Theorem brstruct 17188
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 17187 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabiv 5834 1 Rel Struct
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wcel 2107  cdif 3961  cin 3963  wss 3964  c0 4340  {csn 4632   × cxp 5688  dom cdm 5690  Rel wrel 5695  Fun wfun 6560  cfv 6566  cle 11300  cn 12270  ...cfz 13550   Struct cstr 17186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-ss 3981  df-opab 5212  df-xp 5696  df-rel 5697  df-struct 17187
This theorem is referenced by:  isstruct2  17189  structex  17190
  Copyright terms: Public domain W3C validator