| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version | ||
| Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| brstruct | ⊢ Rel Struct |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-struct 17058 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel Struct |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∈ wcel 2111 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {csn 4573 × cxp 5612 dom cdm 5614 Rel wrel 5619 Fun wfun 6475 ‘cfv 6481 ≤ cle 11147 ℕcn 12125 ...cfz 13407 Struct cstr 17057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-struct 17058 |
| This theorem is referenced by: isstruct2 17060 structex 17061 |
| Copyright terms: Public domain | W3C validator |