MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brstruct Structured version   Visualization version   GIF version

Theorem brstruct 17190
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 17189 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabiv 5843 1 Rel Struct
Colors of variables: wff setvar class
Syntax hints:  w3a 1087  wcel 2103  cdif 3967  cin 3969  wss 3970  c0 4347  {csn 4648   × cxp 5697  dom cdm 5699  Rel wrel 5704  Fun wfun 6566  cfv 6572  cle 11321  cn 12289  ...cfz 13563   Struct cstr 17188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3484  df-ss 3987  df-opab 5232  df-xp 5705  df-rel 5706  df-struct 17189
This theorem is referenced by:  isstruct2  17191  structex  17192
  Copyright terms: Public domain W3C validator