Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 16848 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel Struct |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 × cxp 5587 dom cdm 5589 Rel wrel 5594 Fun wfun 6427 ‘cfv 6433 ≤ cle 11010 ℕcn 11973 ...cfz 13239 Struct cstr 16847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-struct 16848 |
This theorem is referenced by: isstruct2 16850 structex 16851 |
Copyright terms: Public domain | W3C validator |