MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brstruct Structured version   Visualization version   GIF version

Theorem brstruct 17059
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 17058 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabiv 5763 1 Rel Struct
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wcel 2109  cdif 3900  cin 3902  wss 3903  c0 4284  {csn 4577   × cxp 5617  dom cdm 5619  Rel wrel 5624  Fun wfun 6476  cfv 6482  cle 11150  cn 12128  ...cfz 13410   Struct cstr 17057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-ss 3920  df-opab 5155  df-xp 5625  df-rel 5626  df-struct 17058
This theorem is referenced by:  isstruct2  17060  structex  17061
  Copyright terms: Public domain W3C validator