| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version | ||
| Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| brstruct | ⊢ Rel Struct |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-struct 17093 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel Struct |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 × cxp 5629 dom cdm 5631 Rel wrel 5636 Fun wfun 6493 ‘cfv 6499 ≤ cle 11185 ℕcn 12162 ...cfz 13444 Struct cstr 17092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-struct 17093 |
| This theorem is referenced by: isstruct2 17095 structex 17096 |
| Copyright terms: Public domain | W3C validator |