MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brstruct Structured version   Visualization version   GIF version

Theorem brstruct 17124
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 17123 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabiv 5791 1 Rel Struct
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wcel 2109  cdif 3919  cin 3921  wss 3922  c0 4304  {csn 4597   × cxp 5644  dom cdm 5646  Rel wrel 5651  Fun wfun 6513  cfv 6519  cle 11227  cn 12197  ...cfz 13481   Struct cstr 17122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-ss 3939  df-opab 5178  df-xp 5652  df-rel 5653  df-struct 17123
This theorem is referenced by:  isstruct2  17125  structex  17126
  Copyright terms: Public domain W3C validator