| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version | ||
| Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| brstruct | ⊢ Rel Struct |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-struct 17123 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
| 2 | 1 | relopabiv 5791 | 1 ⊢ Rel Struct |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3919 ∩ cin 3921 ⊆ wss 3922 ∅c0 4304 {csn 4597 × cxp 5644 dom cdm 5646 Rel wrel 5651 Fun wfun 6513 ‘cfv 6519 ≤ cle 11227 ℕcn 12197 ...cfz 13481 Struct cstr 17122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-ss 3939 df-opab 5178 df-xp 5652 df-rel 5653 df-struct 17123 |
| This theorem is referenced by: isstruct2 17125 structex 17126 |
| Copyright terms: Public domain | W3C validator |