MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brstruct Structured version   Visualization version   GIF version

Theorem brstruct 17168
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 17167 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabiv 5812 1 Rel Struct
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wcel 2107  cdif 3930  cin 3932  wss 3933  c0 4315  {csn 4608   × cxp 5665  dom cdm 5667  Rel wrel 5672  Fun wfun 6536  cfv 6542  cle 11279  cn 12249  ...cfz 13530   Struct cstr 17166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-ss 3950  df-opab 5188  df-xp 5673  df-rel 5674  df-struct 17167
This theorem is referenced by:  isstruct2  17169  structex  17170
  Copyright terms: Public domain W3C validator