![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 17187 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabiv 5834 | 1 ⊢ Rel Struct |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 ∈ wcel 2107 ∖ cdif 3961 ∩ cin 3963 ⊆ wss 3964 ∅c0 4340 {csn 4632 × cxp 5688 dom cdm 5690 Rel wrel 5695 Fun wfun 6560 ‘cfv 6566 ≤ cle 11300 ℕcn 12270 ...cfz 13550 Struct cstr 17186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3981 df-opab 5212 df-xp 5696 df-rel 5697 df-struct 17187 |
This theorem is referenced by: isstruct2 17189 structex 17190 |
Copyright terms: Public domain | W3C validator |