![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 17189 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabiv 5843 | 1 ⊢ Rel Struct |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 ∈ wcel 2103 ∖ cdif 3967 ∩ cin 3969 ⊆ wss 3970 ∅c0 4347 {csn 4648 × cxp 5697 dom cdm 5699 Rel wrel 5704 Fun wfun 6566 ‘cfv 6572 ≤ cle 11321 ℕcn 12289 ...cfz 13563 Struct cstr 17188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3484 df-ss 3987 df-opab 5232 df-xp 5705 df-rel 5706 df-struct 17189 |
This theorem is referenced by: isstruct2 17191 structex 17192 |
Copyright terms: Public domain | W3C validator |