| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version | ||
| Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| brstruct | ⊢ Rel Struct |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-struct 17167 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
| 2 | 1 | relopabiv 5812 | 1 ⊢ Rel Struct |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∈ wcel 2107 ∖ cdif 3930 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 {csn 4608 × cxp 5665 dom cdm 5667 Rel wrel 5672 Fun wfun 6536 ‘cfv 6542 ≤ cle 11279 ℕcn 12249 ...cfz 13530 Struct cstr 17166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-ss 3950 df-opab 5188 df-xp 5673 df-rel 5674 df-struct 17167 |
| This theorem is referenced by: isstruct2 17169 structex 17170 |
| Copyright terms: Public domain | W3C validator |