MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structex Structured version   Visualization version   GIF version

Theorem structex 17118
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
structex (𝐺 Struct 𝑋𝐺 ∈ V)

Proof of Theorem structex
StepHypRef Expression
1 brstruct 17116 . 2 Rel Struct
21brrelex1i 5733 1 (𝐺 Struct 𝑋𝐺 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3463   class class class wbr 5148   Struct cstr 17114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5683  df-rel 5684  df-struct 17115
This theorem is referenced by:  setsn0fun  17141  setsstruct2  17142  strfv  17172  basprssdmsets  17192  opelstrbas  17193  cnfldexOLD  21301  edgfiedgval  28886  structgrssvtxlem  28892  setsiedg  28905
  Copyright terms: Public domain W3C validator