![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > structex | Structured version Visualization version GIF version |
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
structex | ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brstruct 16232 | . 2 ⊢ Rel Struct | |
2 | 1 | brrelex1i 5394 | 1 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 Vcvv 3415 class class class wbr 4874 Struct cstr 16219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4875 df-opab 4937 df-xp 5349 df-rel 5350 df-struct 16225 |
This theorem is referenced by: setsn0fun 16260 setsstruct2 16261 strfv 16271 basprssdmsets 16289 opelstrbas 16338 cnfldex 20110 edgfiedgval 26316 structgrssvtxlem 26322 setsiedg 26335 |
Copyright terms: Public domain | W3C validator |