Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > structex | Structured version Visualization version GIF version |
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
structex | ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brstruct 16793 | . 2 ⊢ Rel Struct | |
2 | 1 | brrelex1i 5639 | 1 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3427 class class class wbr 5075 Struct cstr 16791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-xp 5591 df-rel 5592 df-struct 16792 |
This theorem is referenced by: setsn0fun 16818 setsstruct2 16819 strfv 16849 basprssdmsets 16869 opelstrbas 16870 cnfldex 20544 edgfiedgval 27330 structgrssvtxlem 27336 setsiedg 27349 |
Copyright terms: Public domain | W3C validator |