MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isstruct2 Structured version   Visualization version   GIF version

Theorem isstruct2 17066
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
isstruct2 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))

Proof of Theorem isstruct2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 17065 . . 3 Rel Struct
21brrelex12i 5674 . 2 (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V))
3 ssun1 4127 . . . . 5 𝐹 ⊆ (𝐹 ∪ {∅})
4 undif1 4425 . . . . 5 ((𝐹 ∖ {∅}) ∪ {∅}) = (𝐹 ∪ {∅})
53, 4sseqtrri 3979 . . . 4 𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅})
6 simp2 1137 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → Fun (𝐹 ∖ {∅}))
76funfnd 6518 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}))
8 elinel2 4151 . . . . . . . . . . 11 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ (ℕ × ℕ))
9 1st2nd2 7966 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
108, 9syl 17 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
11103ad2ant1 1133 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
1211fveq2d 6832 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
13 df-ov 7355 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
14 fzfi 13885 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) ∈ Fin
1513, 14eqeltrri 2828 . . . . . . . 8 (...‘⟨(1st𝑋), (2nd𝑋)⟩) ∈ Fin
1612, 15eqeltrdi 2839 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) ∈ Fin)
17 difss 4085 . . . . . . . . 9 (𝐹 ∖ {∅}) ⊆ 𝐹
18 dmss 5847 . . . . . . . . 9 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
1917, 18ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
20 simp3 1138 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom 𝐹 ⊆ (...‘𝑋))
2119, 20sstrid 3941 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ⊆ (...‘𝑋))
2216, 21ssfid 9159 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ∈ Fin)
23 fnfi 9093 . . . . . 6 (((𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}) ∧ dom (𝐹 ∖ {∅}) ∈ Fin) → (𝐹 ∖ {∅}) ∈ Fin)
247, 22, 23syl2anc 584 . . . . 5 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) ∈ Fin)
25 p0ex 5324 . . . . 5 {∅} ∈ V
26 unexg 7682 . . . . 5 (((𝐹 ∖ {∅}) ∈ Fin ∧ {∅} ∈ V) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
2724, 25, 26sylancl 586 . . . 4 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
28 ssexg 5263 . . . 4 ((𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅}) ∧ ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V) → 𝐹 ∈ V)
295, 27, 28sylancr 587 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝐹 ∈ V)
30 elex 3457 . . . 4 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ V)
31303ad2ant1 1133 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 ∈ V)
3229, 31jca 511 . 2 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∈ V ∧ 𝑋 ∈ V))
33 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
3433eleq1d 2816 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
35 simpl 482 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
3635difeq1d 4074 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
3736funeqd 6509 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
3835dmeqd 5850 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
3933fveq2d 6832 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
4038, 39sseq12d 3963 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
4134, 37, 403anbi123d 1438 . . 3 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
42 df-struct 17064 . . 3 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
4341, 42brabga 5477 . 2 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
442, 32, 43pm5.21nii 378 1 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4282  {csn 4575  cop 4581   class class class wbr 5093   × cxp 5617  dom cdm 5619  Fun wfun 6481   Fn wfn 6482  cfv 6487  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Fincfn 8875  cle 11153  cn 12131  ...cfz 13413   Struct cstr 17063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-struct 17064
This theorem is referenced by:  structn0fun  17068  isstruct  17069  setsstruct2  17091
  Copyright terms: Public domain W3C validator