MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isstruct2 Structured version   Visualization version   GIF version

Theorem isstruct2 16495
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
isstruct2 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))

Proof of Theorem isstruct2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 16494 . . 3 Rel Struct
21brrelex12i 5609 . 2 (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V))
3 ssun1 4150 . . . . 5 𝐹 ⊆ (𝐹 ∪ {∅})
4 undif1 4426 . . . . 5 ((𝐹 ∖ {∅}) ∪ {∅}) = (𝐹 ∪ {∅})
53, 4sseqtrri 4006 . . . 4 𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅})
6 simp2 1133 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → Fun (𝐹 ∖ {∅}))
76funfnd 6388 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}))
8 elinel2 4175 . . . . . . . . . . 11 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ (ℕ × ℕ))
9 1st2nd2 7730 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
108, 9syl 17 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
11103ad2ant1 1129 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
1211fveq2d 6676 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
13 df-ov 7161 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
14 fzfi 13343 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) ∈ Fin
1513, 14eqeltrri 2912 . . . . . . . 8 (...‘⟨(1st𝑋), (2nd𝑋)⟩) ∈ Fin
1612, 15eqeltrdi 2923 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) ∈ Fin)
17 difss 4110 . . . . . . . . 9 (𝐹 ∖ {∅}) ⊆ 𝐹
18 dmss 5773 . . . . . . . . 9 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
1917, 18ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
20 simp3 1134 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom 𝐹 ⊆ (...‘𝑋))
2119, 20sstrid 3980 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ⊆ (...‘𝑋))
2216, 21ssfid 8743 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ∈ Fin)
23 fnfi 8798 . . . . . 6 (((𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}) ∧ dom (𝐹 ∖ {∅}) ∈ Fin) → (𝐹 ∖ {∅}) ∈ Fin)
247, 22, 23syl2anc 586 . . . . 5 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) ∈ Fin)
25 p0ex 5287 . . . . 5 {∅} ∈ V
26 unexg 7474 . . . . 5 (((𝐹 ∖ {∅}) ∈ Fin ∧ {∅} ∈ V) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
2724, 25, 26sylancl 588 . . . 4 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
28 ssexg 5229 . . . 4 ((𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅}) ∧ ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V) → 𝐹 ∈ V)
295, 27, 28sylancr 589 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝐹 ∈ V)
30 elex 3514 . . . 4 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ V)
31303ad2ant1 1129 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 ∈ V)
3229, 31jca 514 . 2 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∈ V ∧ 𝑋 ∈ V))
33 simpr 487 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
3433eleq1d 2899 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
35 simpl 485 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
3635difeq1d 4100 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
3736funeqd 6379 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
3835dmeqd 5776 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
3933fveq2d 6676 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
4038, 39sseq12d 4002 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
4134, 37, 403anbi123d 1432 . . 3 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
42 df-struct 16487 . . 3 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
4341, 42brabga 5423 . 2 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
442, 32, 43pm5.21nii 382 1 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569  cop 4575   class class class wbr 5068   × cxp 5555  dom cdm 5557  Fun wfun 6351   Fn wfn 6352  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Fincfn 8511  cle 10678  cn 11640  ...cfz 12895   Struct cstr 16481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487
This theorem is referenced by:  structn0fun  16497  isstruct  16498  setsstruct2  16523
  Copyright terms: Public domain W3C validator