MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isstruct2 Structured version   Visualization version   GIF version

Theorem isstruct2 17078
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
isstruct2 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))

Proof of Theorem isstruct2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 17077 . . 3 Rel Struct
21brrelex12i 5678 . 2 (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V))
3 ssun1 4131 . . . . 5 𝐹 ⊆ (𝐹 ∪ {∅})
4 undif1 4429 . . . . 5 ((𝐹 ∖ {∅}) ∪ {∅}) = (𝐹 ∪ {∅})
53, 4sseqtrri 3987 . . . 4 𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅})
6 simp2 1137 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → Fun (𝐹 ∖ {∅}))
76funfnd 6517 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}))
8 elinel2 4155 . . . . . . . . . . 11 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ (ℕ × ℕ))
9 1st2nd2 7970 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
108, 9syl 17 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
11103ad2ant1 1133 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
1211fveq2d 6830 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
13 df-ov 7356 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
14 fzfi 13897 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) ∈ Fin
1513, 14eqeltrri 2825 . . . . . . . 8 (...‘⟨(1st𝑋), (2nd𝑋)⟩) ∈ Fin
1612, 15eqeltrdi 2836 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) ∈ Fin)
17 difss 4089 . . . . . . . . 9 (𝐹 ∖ {∅}) ⊆ 𝐹
18 dmss 5849 . . . . . . . . 9 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
1917, 18ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
20 simp3 1138 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom 𝐹 ⊆ (...‘𝑋))
2119, 20sstrid 3949 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ⊆ (...‘𝑋))
2216, 21ssfid 9170 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ∈ Fin)
23 fnfi 9102 . . . . . 6 (((𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}) ∧ dom (𝐹 ∖ {∅}) ∈ Fin) → (𝐹 ∖ {∅}) ∈ Fin)
247, 22, 23syl2anc 584 . . . . 5 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) ∈ Fin)
25 p0ex 5326 . . . . 5 {∅} ∈ V
26 unexg 7683 . . . . 5 (((𝐹 ∖ {∅}) ∈ Fin ∧ {∅} ∈ V) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
2724, 25, 26sylancl 586 . . . 4 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
28 ssexg 5265 . . . 4 ((𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅}) ∧ ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V) → 𝐹 ∈ V)
295, 27, 28sylancr 587 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝐹 ∈ V)
30 elex 3459 . . . 4 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ V)
31303ad2ant1 1133 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 ∈ V)
3229, 31jca 511 . 2 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∈ V ∧ 𝑋 ∈ V))
33 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
3433eleq1d 2813 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
35 simpl 482 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
3635difeq1d 4078 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
3736funeqd 6508 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
3835dmeqd 5852 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
3933fveq2d 6830 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
4038, 39sseq12d 3971 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
4134, 37, 403anbi123d 1438 . . 3 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
42 df-struct 17076 . . 3 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
4341, 42brabga 5481 . 2 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
442, 32, 43pm5.21nii 378 1 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  cop 4585   class class class wbr 5095   × cxp 5621  dom cdm 5623  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Fincfn 8879  cle 11169  cn 12146  ...cfz 13428   Struct cstr 17075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076
This theorem is referenced by:  structn0fun  17080  isstruct  17081  setsstruct2  17103
  Copyright terms: Public domain W3C validator