MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isstruct2 Structured version   Visualization version   GIF version

Theorem isstruct2 17082
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
isstruct2 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))

Proof of Theorem isstruct2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 17081 . . 3 Rel Struct
21brrelex12i 5732 . 2 (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V))
3 ssun1 4173 . . . . 5 𝐹 ⊆ (𝐹 ∪ {∅})
4 undif1 4476 . . . . 5 ((𝐹 ∖ {∅}) ∪ {∅}) = (𝐹 ∪ {∅})
53, 4sseqtrri 4020 . . . 4 𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅})
6 simp2 1138 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → Fun (𝐹 ∖ {∅}))
76funfnd 6580 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}))
8 elinel2 4197 . . . . . . . . . . 11 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ (ℕ × ℕ))
9 1st2nd2 8014 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
108, 9syl 17 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
11103ad2ant1 1134 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
1211fveq2d 6896 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
13 df-ov 7412 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
14 fzfi 13937 . . . . . . . . 9 ((1st𝑋)...(2nd𝑋)) ∈ Fin
1513, 14eqeltrri 2831 . . . . . . . 8 (...‘⟨(1st𝑋), (2nd𝑋)⟩) ∈ Fin
1612, 15eqeltrdi 2842 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (...‘𝑋) ∈ Fin)
17 difss 4132 . . . . . . . . 9 (𝐹 ∖ {∅}) ⊆ 𝐹
18 dmss 5903 . . . . . . . . 9 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
1917, 18ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
20 simp3 1139 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom 𝐹 ⊆ (...‘𝑋))
2119, 20sstrid 3994 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ⊆ (...‘𝑋))
2216, 21ssfid 9267 . . . . . 6 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → dom (𝐹 ∖ {∅}) ∈ Fin)
23 fnfi 9181 . . . . . 6 (((𝐹 ∖ {∅}) Fn dom (𝐹 ∖ {∅}) ∧ dom (𝐹 ∖ {∅}) ∈ Fin) → (𝐹 ∖ {∅}) ∈ Fin)
247, 22, 23syl2anc 585 . . . . 5 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∖ {∅}) ∈ Fin)
25 p0ex 5383 . . . . 5 {∅} ∈ V
26 unexg 7736 . . . . 5 (((𝐹 ∖ {∅}) ∈ Fin ∧ {∅} ∈ V) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
2724, 25, 26sylancl 587 . . . 4 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V)
28 ssexg 5324 . . . 4 ((𝐹 ⊆ ((𝐹 ∖ {∅}) ∪ {∅}) ∧ ((𝐹 ∖ {∅}) ∪ {∅}) ∈ V) → 𝐹 ∈ V)
295, 27, 28sylancr 588 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝐹 ∈ V)
30 elex 3493 . . . 4 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ V)
31303ad2ant1 1134 . . 3 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → 𝑋 ∈ V)
3229, 31jca 513 . 2 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)) → (𝐹 ∈ V ∧ 𝑋 ∈ V))
33 simpr 486 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
3433eleq1d 2819 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
35 simpl 484 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
3635difeq1d 4122 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
3736funeqd 6571 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
3835dmeqd 5906 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
3933fveq2d 6896 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
4038, 39sseq12d 4016 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
4134, 37, 403anbi123d 1437 . . 3 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
42 df-struct 17080 . . 3 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
4341, 42brabga 5535 . 2 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
442, 32, 43pm5.21nii 380 1 (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  cdif 3946  cun 3947  cin 3948  wss 3949  c0 4323  {csn 4629  cop 4635   class class class wbr 5149   × cxp 5675  dom cdm 5677  Fun wfun 6538   Fn wfn 6539  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  Fincfn 8939  cle 11249  cn 12212  ...cfz 13484   Struct cstr 17079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-struct 17080
This theorem is referenced by:  structn0fun  17084  isstruct  17085  setsstruct2  17107
  Copyright terms: Public domain W3C validator