![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version |
Description: Analogue of sbid 2253 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3909 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
2 | sbcid 3808 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2807 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
4 | abid2 2877 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2767 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 [wsbc 3791 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: csbeq1a 3922 fvmpt2f 7017 fvmpt2i 7026 fvmpocurryd 8295 fsumsplitf 15775 gsummoncoe1 22328 gsumply1eq 22329 disji2f 32597 disjif2 32601 disjabrex 32602 disjabrexf 32603 gsummpt2co 33034 measiuns 34198 fphpd 42804 disjrnmpt2 45131 climinf2mpt 45670 climinfmpt 45671 dvmptmulf 45893 sge0f1o 46338 |
Copyright terms: Public domain | W3C validator |