MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3892
Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3880 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3787 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2803 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2873 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2763 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2714  [wsbc 3770  csb 3879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-sbc 3771  df-csb 3880
This theorem is referenced by:  csbeq1a  3893  fvmpt2f  6992  fvmpt2i  7001  fvmpocurryd  8275  fsumsplitf  15763  gsummoncoe1  22251  gsumply1eq  22252  disji2f  32563  disjif2  32567  disjabrex  32568  disjabrexf  32569  gsummpt2co  33047  measiuns  34253  fphpd  42806  disjrnmpt2  45179  climinf2mpt  45710  climinfmpt  45711  dvmptmulf  45933  sge0f1o  46378
  Copyright terms: Public domain W3C validator