| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version | ||
| Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3854 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
| 2 | sbcid 3761 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2796 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 4 | abid2 2865 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3744 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: csbeq1a 3867 fvmpt2f 6935 fvmpt2i 6944 fvmpocurryd 8211 fsumsplitf 15667 gsummoncoe1 22211 gsumply1eq 22212 disji2f 32539 disjif2 32543 disjabrex 32544 disjabrexf 32545 gsummpt2co 33014 measiuns 34183 fphpd 42789 disjrnmpt2 45166 climinf2mpt 45696 climinfmpt 45697 dvmptmulf 45919 sge0f1o 46364 |
| Copyright terms: Public domain | W3C validator |