Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version |
Description: Analogue of sbid 2253 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3812 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
2 | sbcid 3711 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2808 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
4 | abid2 2879 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2769 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 {cab 2714 [wsbc 3694 ⦋csb 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-sbc 3695 df-csb 3812 |
This theorem is referenced by: csbeq1a 3825 fvmpt2f 6819 fvmpt2i 6828 fvmpocurryd 8013 fsumsplitf 15306 gsummoncoe1 21225 gsumply1eq 21226 disji2f 30635 disjif2 30639 disjabrex 30640 disjabrexf 30641 gsummpt2co 31027 measiuns 31897 fphpd 40341 disjrnmpt2 42399 climinf2mpt 42930 climinfmpt 42931 dvmptmulf 43153 sge0f1o 43595 |
Copyright terms: Public domain | W3C validator |