| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version | ||
| Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3863 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
| 2 | sbcid 3770 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2796 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 4 | abid2 2865 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: csbeq1a 3876 fvmpt2f 6969 fvmpt2i 6978 fvmpocurryd 8250 fsumsplitf 15708 gsummoncoe1 22195 gsumply1eq 22196 disji2f 32506 disjif2 32510 disjabrex 32511 disjabrexf 32512 gsummpt2co 32988 measiuns 34207 fphpd 42804 disjrnmpt2 45182 climinf2mpt 45712 climinfmpt 45713 dvmptmulf 45935 sge0f1o 46380 |
| Copyright terms: Public domain | W3C validator |