MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3875
Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3863 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3770 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2796 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2865 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2756 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  [wsbc 3753  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754  df-csb 3863
This theorem is referenced by:  csbeq1a  3876  fvmpt2f  6969  fvmpt2i  6978  fvmpocurryd  8250  fsumsplitf  15708  gsummoncoe1  22195  gsumply1eq  22196  disji2f  32506  disjif2  32510  disjabrex  32511  disjabrexf  32512  gsummpt2co  32988  measiuns  34207  fphpd  42804  disjrnmpt2  45182  climinf2mpt  45712  climinfmpt  45713  dvmptmulf  45935  sge0f1o  46380
  Copyright terms: Public domain W3C validator