MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3878
Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3866 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3773 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2797 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2866 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2757 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2708  [wsbc 3756  csb 3865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3757  df-csb 3866
This theorem is referenced by:  csbeq1a  3879  fvmpt2f  6972  fvmpt2i  6981  fvmpocurryd  8253  fsumsplitf  15715  gsummoncoe1  22202  gsumply1eq  22203  disji2f  32513  disjif2  32517  disjabrex  32518  disjabrexf  32519  gsummpt2co  32995  measiuns  34214  fphpd  42811  disjrnmpt2  45189  climinf2mpt  45719  climinfmpt  45720  dvmptmulf  45942  sge0f1o  46387
  Copyright terms: Public domain W3C validator