MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3934
Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3922 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3821 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2812 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2882 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2772 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cab 2717  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by:  csbeq1a  3935  fvmpt2f  7030  fvmpt2i  7039  fvmpocurryd  8312  fsumsplitf  15790  gsummoncoe1  22333  gsumply1eq  22334  disji2f  32599  disjif2  32603  disjabrex  32604  disjabrexf  32605  gsummpt2co  33031  measiuns  34181  fphpd  42772  disjrnmpt2  45095  climinf2mpt  45635  climinfmpt  45636  dvmptmulf  45858  sge0f1o  46303
  Copyright terms: Public domain W3C validator