MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3841
Description: Analogue of sbid 2251 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3829 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3728 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2809 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2881 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2770 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712  df-csb 3829
This theorem is referenced by:  csbeq1a  3842  fvmpt2f  6858  fvmpt2i  6867  fvmpocurryd  8058  fsumsplitf  15382  gsummoncoe1  21385  gsumply1eq  21386  disji2f  30817  disjif2  30821  disjabrex  30822  disjabrexf  30823  gsummpt2co  31210  measiuns  32085  fphpd  40554  disjrnmpt2  42615  climinf2mpt  43145  climinfmpt  43146  dvmptmulf  43368  sge0f1o  43810
  Copyright terms: Public domain W3C validator