| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version | ||
| Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3880 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
| 2 | sbcid 3787 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2803 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 4 | abid2 2873 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 5 | 1, 3, 4 | 3eqtri 2763 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2714 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbeq1a 3893 fvmpt2f 6992 fvmpt2i 7001 fvmpocurryd 8275 fsumsplitf 15763 gsummoncoe1 22251 gsumply1eq 22252 disji2f 32563 disjif2 32567 disjabrex 32568 disjabrexf 32569 gsummpt2co 33047 measiuns 34253 fphpd 42806 disjrnmpt2 45179 climinf2mpt 45710 climinfmpt 45711 dvmptmulf 45933 sge0f1o 46378 |
| Copyright terms: Public domain | W3C validator |