Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version |
Description: Analogue of sbid 2251 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3829 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
2 | sbcid 3728 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2809 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
4 | abid2 2881 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2770 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbeq1a 3842 fvmpt2f 6858 fvmpt2i 6867 fvmpocurryd 8058 fsumsplitf 15382 gsummoncoe1 21385 gsumply1eq 21386 disji2f 30817 disjif2 30821 disjabrex 30822 disjabrexf 30823 gsummpt2co 31210 measiuns 32085 fphpd 40554 disjrnmpt2 42615 climinf2mpt 43145 climinfmpt 43146 dvmptmulf 43368 sge0f1o 43810 |
Copyright terms: Public domain | W3C validator |