MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3863
Description: Analogue of sbid 2258 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3851 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3758 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2798 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2868 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2758 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  [wsbc 3741  csb 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3742  df-csb 3851
This theorem is referenced by:  csbeq1a  3864  fvmpt2f  6930  fvmpt2i  6939  fvmpocurryd  8201  fsumsplitf  15646  gsummoncoe1  22221  gsumply1eq  22222  disji2f  32552  disjif2  32556  disjabrex  32557  disjabrexf  32558  gsummpt2co  33023  measiuns  34225  fphpd  42848  disjrnmpt2  45224  climinf2mpt  45751  climinfmpt  45752  dvmptmulf  45974  sge0f1o  46419
  Copyright terms: Public domain W3C validator