| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version | ||
| Description: Analogue of sbid 2258 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3851 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
| 2 | sbcid 3758 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2798 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 4 | abid2 2868 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 df-csb 3851 |
| This theorem is referenced by: csbeq1a 3864 fvmpt2f 6930 fvmpt2i 6939 fvmpocurryd 8201 fsumsplitf 15646 gsummoncoe1 22221 gsumply1eq 22222 disji2f 32552 disjif2 32556 disjabrex 32557 disjabrexf 32558 gsummpt2co 33023 measiuns 34225 fphpd 42848 disjrnmpt2 45224 climinf2mpt 45751 climinfmpt 45752 dvmptmulf 45974 sge0f1o 46419 |
| Copyright terms: Public domain | W3C validator |