MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Visualization version   GIF version

Theorem csbid 3866
Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3854 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3761 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2796 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2865 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2756 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  [wsbc 3744  csb 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3745  df-csb 3854
This theorem is referenced by:  csbeq1a  3867  fvmpt2f  6935  fvmpt2i  6944  fvmpocurryd  8211  fsumsplitf  15667  gsummoncoe1  22211  gsumply1eq  22212  disji2f  32539  disjif2  32543  disjabrex  32544  disjabrexf  32545  gsummpt2co  33014  measiuns  34183  fphpd  42789  disjrnmpt2  45166  climinf2mpt  45696  climinfmpt  45697  dvmptmulf  45919  sge0f1o  46364
  Copyright terms: Public domain W3C validator