| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbid | Structured version Visualization version GIF version | ||
| Description: Analogue of sbid 2256 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3866 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
| 2 | sbcid 3773 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2797 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
| 4 | abid2 2866 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 5 | 1, 3, 4 | 3eqtri 2757 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: csbeq1a 3879 fvmpt2f 6972 fvmpt2i 6981 fvmpocurryd 8253 fsumsplitf 15715 gsummoncoe1 22202 gsumply1eq 22203 disji2f 32513 disjif2 32517 disjabrex 32518 disjabrexf 32519 gsummpt2co 32995 measiuns 34214 fphpd 42811 disjrnmpt2 45189 climinf2mpt 45719 climinfmpt 45720 dvmptmulf 45942 sge0f1o 46387 |
| Copyright terms: Public domain | W3C validator |