Proof of Theorem precsexlemcbv
Step | Hyp | Ref
| Expression |
1 | | precsexlem.1 |
. 2
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
2 | | fveq2 6891 |
. . . . . 6
⊢ (𝑝 = 𝑞 → (1st ‘𝑝) = (1st ‘𝑞)) |
3 | | fveq2 6891 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (2nd ‘𝑝) = (2nd ‘𝑞)) |
4 | 3 | csbeq1d 3897 |
. . . . . 6
⊢ (𝑝 = 𝑞 → ⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 =
⦋(2nd ‘𝑞) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉) |
5 | 2, 4 | csbeq12dv 3902 |
. . . . 5
⊢ (𝑝 = 𝑞 → ⦋(1st
‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 =
⦋(1st ‘𝑞) / 𝑙⦌⦋(2nd
‘𝑞) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉) |
6 | | rexeq 3320 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑠 → (∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
7 | 6 | rexbidv 3177 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
8 | 7 | abbidv 2800 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑠 → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)} =
{𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}) |
9 | 8 | uneq2d 4163 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}) =
({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) |
10 | 9 | uneq2d 4163 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → (𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) =
(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
11 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → 𝑟 = 𝑠) |
12 | | rexeq 3320 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑠 → (∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
13 | 12 | rexbidv 3177 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
14 | 13 | abbidv 2800 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑠 → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)} =
{𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝑅 ∈
𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}) |
15 | 14 | uneq2d 4163 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}) =
({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) |
16 | 11, 15 | uneq12d 4164 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) =
(𝑠 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
17 | 10, 16 | opeq12d 4881 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → 〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 = 〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑠 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉) |
18 | | eqeq1 2735 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ 𝑏 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅))) |
19 | 18 | 2rexbidv 3218 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑏 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅))) |
20 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑅 = 𝑧𝑅 →
(𝑥𝑅
-s 𝐴) = (𝑧𝑅
-s 𝐴)) |
21 | 20 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 = 𝑧𝑅 →
((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿) = ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿)) |
22 | 21 | oveq2d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑅 = 𝑧𝑅 → (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿))) |
23 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑅 = 𝑧𝑅 →
𝑥𝑅 =
𝑧𝑅) |
24 | 22, 23 | oveq12d 7430 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝑅 = 𝑧𝑅 → ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑧𝑅)) |
25 | 24 | eqeq2d 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑥𝑅 = 𝑧𝑅 →
(𝑏 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) ↔ 𝑏 = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑧𝑅))) |
26 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦𝐿 = 𝑤 → ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿) = ((𝑧𝑅
-s 𝐴)
·s 𝑤)) |
27 | 26 | oveq2d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦𝐿 = 𝑤 → ( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑤))) |
28 | 27 | oveq1d 7427 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦𝐿 = 𝑤 → (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑧𝑅) = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑤)) /su 𝑧𝑅)) |
29 | 28 | eqeq2d 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑦𝐿 = 𝑤 → (𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑧𝑅)
↔ 𝑏 = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑤)) /su 𝑧𝑅))) |
30 | 25, 29 | cbvrex2vw 3238 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑏 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)) |
31 | 19, 30 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
↔ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅))) |
32 | 31 | cbvabv 2804 |
. . . . . . . . . . . 12
⊢ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)} =
{𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} |
33 | | eqeq1 2735 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ 𝑏 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿))) |
34 | 33 | 2rexbidv 3218 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑏 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿))) |
35 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥𝐿 = 𝑧𝐿 →
(𝑥𝐿
-s 𝐴) = (𝑧𝐿
-s 𝐴)) |
36 | 35 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 = 𝑧𝐿 →
((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅) = ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅)) |
37 | 36 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 = 𝑧𝐿 → (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅))) |
38 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 = 𝑧𝐿 →
𝑥𝐿 =
𝑧𝐿) |
39 | 37, 38 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝐿 = 𝑧𝐿 → ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑧𝐿)) |
40 | 39 | eqeq2d 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝐿 = 𝑧𝐿 →
(𝑏 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) ↔ 𝑏 = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑧𝐿))) |
41 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦𝑅 = 𝑡 → ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅) = ((𝑧𝐿
-s 𝐴)
·s 𝑡)) |
42 | 41 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦𝑅 = 𝑡 → ( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑡))) |
43 | 42 | oveq1d 7427 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦𝑅 = 𝑡 → (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑧𝐿) = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑡)) /su 𝑧𝐿)) |
44 | 43 | eqeq2d 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦𝑅 = 𝑡 → (𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑧𝐿)
↔ 𝑏 = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑡)) /su 𝑧𝐿))) |
45 | 40, 44 | cbvrex2vw 3238 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑏 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑧𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)) |
46 | | breq2 5152 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ( 0s <s 𝑥 ↔ 0s <s
𝑧)) |
47 | 46 | cbvrabv 3441 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} = {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s 𝑧} |
48 | 47 | rexeqi 3323 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿) ↔ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)) |
49 | 45, 48 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑏 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)) |
50 | 34, 49 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
↔ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿))) |
51 | 50 | cbvabv 2804 |
. . . . . . . . . . . 12
⊢ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)} =
{𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)} |
52 | 32, 51 | uneq12i 4161 |
. . . . . . . . . . 11
⊢ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}) =
({𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)}) |
53 | 52 | uneq2i 4160 |
. . . . . . . . . 10
⊢ (𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})) =
(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})) |
54 | | eqeq1 2735 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ 𝑏 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿))) |
55 | 54 | 2rexbidv 3218 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑏 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿))) |
56 | 35 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝐿 = 𝑧𝐿 →
((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿) = ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿)) |
57 | 56 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝐿 = 𝑧𝐿 → (
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿))) |
58 | 57, 38 | oveq12d 7430 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝐿 = 𝑧𝐿 → ((
1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑧𝐿)) |
59 | 58 | eqeq2d 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝐿 = 𝑧𝐿 →
(𝑏 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) ↔ 𝑏 = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑧𝐿))) |
60 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦𝐿 = 𝑤 → ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿) = ((𝑧𝐿
-s 𝐴)
·s 𝑤)) |
61 | 60 | oveq2d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦𝐿 = 𝑤 → ( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿)) = (
1s +s ((𝑧𝐿 -s 𝐴) ·s 𝑤))) |
62 | 61 | oveq1d 7427 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦𝐿 = 𝑤 → (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑧𝐿) = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑤)) /su 𝑧𝐿)) |
63 | 62 | eqeq2d 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦𝐿 = 𝑤 → (𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑧𝐿)
↔ 𝑏 = (( 1s
+s ((𝑧𝐿 -s 𝐴) ·s 𝑤)) /su 𝑧𝐿))) |
64 | 59, 63 | cbvrex2vw 3238 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑏 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑧𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)) |
65 | 47 | rexeqi 3323 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿) ↔ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)) |
66 | 64, 65 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑏 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)) |
67 | 55, 66 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
↔ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿))) |
68 | 67 | cbvabv 2804 |
. . . . . . . . . . . 12
⊢ {𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)} =
{𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} |
69 | | eqeq1 2735 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ 𝑏 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅))) |
70 | 69 | 2rexbidv 3218 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑏 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅))) |
71 | 20 | oveq1d 7427 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 = 𝑧𝑅 →
((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅) = ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅)) |
72 | 71 | oveq2d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑅 = 𝑧𝑅 → (
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅))) |
73 | 72, 23 | oveq12d 7430 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝑅 = 𝑧𝑅 → ((
1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑧𝑅)) |
74 | 73 | eqeq2d 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑥𝑅 = 𝑧𝑅 →
(𝑏 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) ↔ 𝑏 = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑧𝑅))) |
75 | | oveq2 7420 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦𝑅 = 𝑡 → ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅) = ((𝑧𝑅
-s 𝐴)
·s 𝑡)) |
76 | 75 | oveq2d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦𝑅 = 𝑡 → ( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅)) = (
1s +s ((𝑧𝑅 -s 𝐴) ·s 𝑡))) |
77 | 76 | oveq1d 7427 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦𝑅 = 𝑡 → (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑧𝑅) = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑡)) /su 𝑧𝑅)) |
78 | 77 | eqeq2d 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑦𝑅 = 𝑡 → (𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑧𝑅)
↔ 𝑏 = (( 1s
+s ((𝑧𝑅 -s 𝐴) ·s 𝑡)) /su 𝑧𝑅))) |
79 | 74, 78 | cbvrex2vw 3238 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑏 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)) |
80 | 70, 79 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
↔ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅))) |
81 | 80 | cbvabv 2804 |
. . . . . . . . . . . 12
⊢ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝑅 ∈
𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)} =
{𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)} |
82 | 68, 81 | uneq12i 4161 |
. . . . . . . . . . 11
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}) =
({𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}) |
83 | 82 | uneq2i 4160 |
. . . . . . . . . 10
⊢ (𝑠 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})) =
(𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)})) |
84 | 53, 83 | opeq12i 4878 |
. . . . . . . . 9
⊢
〈(𝑙 ∪
({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑠 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑠 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 = 〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 |
85 | 17, 84 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → 〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 = 〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉) |
86 | 85 | cbvcsbv 3905 |
. . . . . . 7
⊢
⦋(2nd ‘𝑞) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 =
⦋(2nd ‘𝑞) / 𝑠⦌〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 |
87 | 86 | csbeq2i 3901 |
. . . . . 6
⊢
⦋(1st ‘𝑞) / 𝑙⦌⦋(2nd
‘𝑞) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 =
⦋(1st ‘𝑞) / 𝑙⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 |
88 | | id 22 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑚 → 𝑙 = 𝑚) |
89 | | rexeq 3320 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑚 → (∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅) ↔ ∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅))) |
90 | 89 | rexbidv 3177 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑚 → (∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅))) |
91 | 90 | abbidv 2800 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑚 → {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} = {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)}) |
92 | 91 | uneq1d 4162 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑚 → ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)}) = ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})) |
93 | 88, 92 | uneq12d 4164 |
. . . . . . . . 9
⊢ (𝑙 = 𝑚 → (𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})) = (𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)}))) |
94 | | rexeq 3320 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑚 → (∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿) ↔ ∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿))) |
95 | 94 | rexbidv 3177 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑚 → (∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿) ↔ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿))) |
96 | 95 | abbidv 2800 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑚 → {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} = {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)}) |
97 | 96 | uneq1d 4162 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑚 → ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}) = ({𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)})) |
98 | 97 | uneq2d 4163 |
. . . . . . . . 9
⊢ (𝑙 = 𝑚 → (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)})) = (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))) |
99 | 93, 98 | opeq12d 4881 |
. . . . . . . 8
⊢ (𝑙 = 𝑚 → 〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 = 〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉) |
100 | 99 | csbeq2dv 3900 |
. . . . . . 7
⊢ (𝑙 = 𝑚 → ⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 =
⦋(2nd ‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉) |
101 | 100 | cbvcsbv 3905 |
. . . . . 6
⊢
⦋(1st ‘𝑞) / 𝑙⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑙 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑙 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 =
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 |
102 | 87, 101 | eqtri 2759 |
. . . . 5
⊢
⦋(1st ‘𝑞) / 𝑙⦌⦋(2nd
‘𝑞) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 =
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉 |
103 | 5, 102 | eqtrdi 2787 |
. . . 4
⊢ (𝑝 = 𝑞 → ⦋(1st
‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉 =
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉) |
104 | 103 | cbvmptv 5261 |
. . 3
⊢ (𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉) = (𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉) |
105 | | rdgeq1 8417 |
. . 3
⊢ ((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉) = (𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉) →
rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) = rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) |
106 | 104, 105 | ax-mp 5 |
. 2
⊢
rec((𝑝 ∈ V
↦ ⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) = rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉) |
107 | 1, 106 | eqtri 2759 |
1
⊢ 𝐹 = rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝐴)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑧 ∈ ( L ‘𝐴) ∣ 0s <s
𝑧}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝐴)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝐴)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉) |