Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   GIF version

Theorem cdleme40v 40463
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in 𝑆 / 𝑢𝑉 (but we use 𝑅 / 𝑢𝑉 for convenience since we have its hypotheses available). (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme40r.y 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme40r.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40r.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40r.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40r.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
Assertion
Ref Expression
cdleme40v (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Distinct variable groups:   ,𝑠,𝑡,𝑦   𝑧,𝑈   𝑧,𝑅   𝑇,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑣,𝑦   𝑄,𝑠,𝑡,𝑦   𝑧,𝐾   𝑢,𝑃,𝑧   𝑢,𝑄,𝑣,𝑧   𝑧,𝐻   𝑃,𝑠,𝑡,𝑣,𝑦   𝐸,𝑠   𝑢,𝑊,𝑧,𝑠,𝑡,𝑣,𝑦   𝐵,𝑠,𝑡,𝑦,𝑢,𝑣,𝑧   𝑦,𝑌   𝑢, ,𝑧,𝑠,𝑡,𝑣,𝑦   𝑢, ,𝑧,𝑠,𝑡,𝑣,𝑦   𝐴,𝑠,𝑡,𝑣,𝑦   𝑢, ,𝑣,𝑧   𝑡,𝑈,𝑣,𝑦   𝑡,𝐾,𝑣,𝑦   𝑡,𝐻,𝑣,𝑦   𝑢,𝐴,𝑧   𝑢,𝑇   𝑣,𝐸,𝑧   𝑢,𝑁,𝑣   𝑢,𝑅   𝑉,𝑠   𝑡,𝑋,𝑦   𝑢,𝑠,𝑧,𝑡,𝑦
Allowed substitution hints:   𝐷(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑢,𝑡)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡)   𝑋(𝑧,𝑣,𝑢,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 5110 . . . . 5 (𝑠 = 𝑢 → (𝑠 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
2 cdleme40.g . . . . . . . . . . . 12 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
3 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑠 𝑡) = (𝑢 𝑡))
43oveq1d 7402 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑠 𝑡) 𝑊) = ((𝑢 𝑡) 𝑊))
54oveq2d 7403 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (𝐸 ((𝑠 𝑡) 𝑊)) = (𝐸 ((𝑢 𝑡) 𝑊)))
65oveq2d 7403 . . . . . . . . . . . 12 (𝑠 = 𝑢 → ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
72, 6eqtrid 2776 . . . . . . . . . . 11 (𝑠 = 𝑢𝐺 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
87eqeq2d 2740 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑦 = 𝐺𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
98imbi2d 340 . . . . . . . . 9 (𝑠 = 𝑢 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
109ralbidv 3156 . . . . . . . 8 (𝑠 = 𝑢 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1110riotabidv 7346 . . . . . . 7 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
12 eqeq1 2733 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
1312imbi2d 340 . . . . . . . . . 10 (𝑦 = 𝑧 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1413ralbidv 3156 . . . . . . . . 9 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
15 breq1 5110 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 𝑊𝑣 𝑊))
1615notbid 318 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 𝑊 ↔ ¬ 𝑣 𝑊))
17 breq1 5110 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
1817notbid 318 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
1916, 18anbi12d 632 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) ↔ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))))
20 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑡 𝑈) = (𝑣 𝑈))
21 oveq2 7395 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑣 → (𝑃 𝑡) = (𝑃 𝑣))
2221oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑣 → ((𝑃 𝑡) 𝑊) = ((𝑃 𝑣) 𝑊))
2322oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑄 ((𝑃 𝑡) 𝑊)) = (𝑄 ((𝑃 𝑣) 𝑊)))
2420, 23oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊))))
25 cdleme40.e . . . . . . . . . . . . . . . 16 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
26 cdleme40r.t . . . . . . . . . . . . . . . 16 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
2724, 25, 263eqtr4g 2789 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣𝐸 = 𝑇)
28 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → (𝑢 𝑡) = (𝑢 𝑣))
2928oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → ((𝑢 𝑡) 𝑊) = ((𝑢 𝑣) 𝑊))
3027, 29oveq12d 7405 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝐸 ((𝑢 𝑡) 𝑊)) = (𝑇 ((𝑢 𝑣) 𝑊)))
3130oveq2d 7403 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊))))
32 cdleme40r.x . . . . . . . . . . . . 13 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
3331, 32eqtr4di 2782 . . . . . . . . . . . 12 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = 𝑋)
3433eqeq2d 2740 . . . . . . . . . . 11 (𝑡 = 𝑣 → (𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = 𝑋))
3519, 34imbi12d 344 . . . . . . . . . 10 (𝑡 = 𝑣 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3635cbvralvw 3215 . . . . . . . . 9 (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3714, 36bitrdi 287 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3837cbvriotavw 7354 . . . . . . 7 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3911, 38eqtrdi 2780 . . . . . 6 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
40 cdleme40.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
41 cdleme40r.o . . . . . 6 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
4239, 40, 413eqtr4g 2789 . . . . 5 (𝑠 = 𝑢𝐼 = 𝑂)
43 oveq1 7394 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 𝑈) = (𝑢 𝑈))
44 oveq2 7395 . . . . . . . . 9 (𝑠 = 𝑢 → (𝑃 𝑠) = (𝑃 𝑢))
4544oveq1d 7402 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑢) 𝑊))
4645oveq2d 7403 . . . . . . 7 (𝑠 = 𝑢 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑢) 𝑊)))
4743, 46oveq12d 7405 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊))))
48 cdleme40.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
49 cdleme40r.y . . . . . 6 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
5047, 48, 493eqtr4g 2789 . . . . 5 (𝑠 = 𝑢𝐷 = 𝑌)
511, 42, 50ifbieq12d 4517 . . . 4 (𝑠 = 𝑢 → if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌))
52 cdleme40.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
53 cdleme40r.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
5451, 52, 533eqtr4g 2789 . . 3 (𝑠 = 𝑢𝑁 = 𝑉)
5554cbvcsbv 3874 . 2 𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉
5655a1i 11 1 (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3862  ifcif 4488   class class class wbr 5107  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Atomscatm 39256  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-riota 7344  df-ov 7390
This theorem is referenced by:  cdleme40w  40464
  Copyright terms: Public domain W3C validator