Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   GIF version

Theorem cdleme40v 39278
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in ⦋𝑆 / π‘’β¦Œπ‘‰ (but we use ⦋𝑅 / π‘’β¦Œπ‘‰ for convenience since we have its hypotheses available). (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐡 = (Baseβ€˜πΎ)
cdleme40.l ≀ = (leβ€˜πΎ)
cdleme40.j ∨ = (joinβ€˜πΎ)
cdleme40.m ∧ = (meetβ€˜πΎ)
cdleme40.a 𝐴 = (Atomsβ€˜πΎ)
cdleme40.h 𝐻 = (LHypβ€˜πΎ)
cdleme40.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme40.e 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdleme40.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdleme40.i 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷)
cdleme40.d 𝐷 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdleme40r.y π‘Œ = ((𝑒 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑒) ∧ π‘Š)))
cdleme40r.t 𝑇 = ((𝑣 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑣) ∧ π‘Š)))
cdleme40r.x 𝑋 = ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
cdleme40r.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋))
cdleme40r.v 𝑉 = if(𝑒 ≀ (𝑃 ∨ 𝑄), 𝑂, π‘Œ)
Assertion
Ref Expression
cdleme40v (𝑅 ∈ 𝐴 β†’ ⦋𝑅 / π‘ β¦Œπ‘ = ⦋𝑅 / π‘’β¦Œπ‘‰)
Distinct variable groups:   𝑣,𝑒,𝑧,𝐴   𝑒,𝐡,𝑣,𝑧   𝑣,𝐻,𝑧   𝑒, ∨ ,𝑣,𝑧   𝑣,𝐾,𝑧   𝑒, ≀ ,𝑣,𝑧   𝑒, ∧ ,𝑣,𝑧   𝑒,𝑃,𝑣,𝑧   𝑒,𝑄,𝑣,𝑧   𝑣,𝑅,𝑧   𝑒,𝑇   𝑣,π‘ˆ,𝑧   𝑒,π‘Š,𝑣,𝑧,𝑠,𝑑,𝑦   𝐴,𝑠   𝑦,𝑑,𝐴   𝐡,𝑠,𝑑,𝑦   𝐸,𝑠   𝑑,𝐻,𝑦   ∨ ,𝑠,𝑑,𝑦   𝑑,𝐾,𝑦   ≀ ,𝑠,𝑑,𝑦   ∧ ,𝑠,𝑑,𝑦   𝑃,𝑠,𝑑,𝑦   𝑄,𝑠,𝑑,𝑦   𝑅,𝑠,𝑑,𝑦   𝑑,π‘ˆ,𝑦   π‘Š,𝑠,𝑑,𝑦   𝑦,π‘Œ   𝑣,𝑑,𝑦   𝑇,𝑠,𝑑,𝑦   𝑣,𝐸,𝑧   𝑒,𝑁,𝑣   𝑒,𝑅   𝑉,𝑠   𝑑,𝑋,𝑦   𝑒,𝑠,𝑧,𝑑,𝑦
Allowed substitution hints:   𝐷(𝑦,𝑧,𝑣,𝑒,𝑑,𝑠)   𝑇(𝑧,𝑣)   π‘ˆ(𝑒,𝑠)   𝐸(𝑦,𝑒,𝑑)   𝐺(𝑦,𝑧,𝑣,𝑒,𝑑,𝑠)   𝐻(𝑒,𝑠)   𝐼(𝑦,𝑧,𝑣,𝑒,𝑑,𝑠)   𝐾(𝑒,𝑠)   𝑁(𝑦,𝑧,𝑑,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑒,𝑑,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑒,𝑑)   𝑋(𝑧,𝑣,𝑒,𝑠)   π‘Œ(𝑧,𝑣,𝑒,𝑑,𝑠)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 5150 . . . . 5 (𝑠 = 𝑒 β†’ (𝑠 ≀ (𝑃 ∨ 𝑄) ↔ 𝑒 ≀ (𝑃 ∨ 𝑄)))
2 cdleme40.g . . . . . . . . . . . 12 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
3 oveq1 7411 . . . . . . . . . . . . . . 15 (𝑠 = 𝑒 β†’ (𝑠 ∨ 𝑑) = (𝑒 ∨ 𝑑))
43oveq1d 7419 . . . . . . . . . . . . . 14 (𝑠 = 𝑒 β†’ ((𝑠 ∨ 𝑑) ∧ π‘Š) = ((𝑒 ∨ 𝑑) ∧ π‘Š))
54oveq2d 7420 . . . . . . . . . . . . 13 (𝑠 = 𝑒 β†’ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)) = (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))
65oveq2d 7420 . . . . . . . . . . . 12 (𝑠 = 𝑒 β†’ ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š))) = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))
72, 6eqtrid 2785 . . . . . . . . . . 11 (𝑠 = 𝑒 β†’ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))
87eqeq2d 2744 . . . . . . . . . 10 (𝑠 = 𝑒 β†’ (𝑦 = 𝐺 ↔ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))))
98imbi2d 341 . . . . . . . . 9 (𝑠 = 𝑒 β†’ (((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺) ↔ ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))))
109ralbidv 3178 . . . . . . . 8 (𝑠 = 𝑒 β†’ (βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺) ↔ βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))))
1110riotabidv 7362 . . . . . . 7 (𝑠 = 𝑒 β†’ (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺)) = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))))
12 eqeq1 2737 . . . . . . . . . . 11 (𝑦 = 𝑧 β†’ (𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))) ↔ 𝑧 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))))
1312imbi2d 341 . . . . . . . . . 10 (𝑦 = 𝑧 β†’ (((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))) ↔ ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))))
1413ralbidv 3178 . . . . . . . . 9 (𝑦 = 𝑧 β†’ (βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))) ↔ βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))))
15 breq1 5150 . . . . . . . . . . . . 13 (𝑑 = 𝑣 β†’ (𝑑 ≀ π‘Š ↔ 𝑣 ≀ π‘Š))
1615notbid 318 . . . . . . . . . . . 12 (𝑑 = 𝑣 β†’ (Β¬ 𝑑 ≀ π‘Š ↔ Β¬ 𝑣 ≀ π‘Š))
17 breq1 5150 . . . . . . . . . . . . 13 (𝑑 = 𝑣 β†’ (𝑑 ≀ (𝑃 ∨ 𝑄) ↔ 𝑣 ≀ (𝑃 ∨ 𝑄)))
1817notbid 318 . . . . . . . . . . . 12 (𝑑 = 𝑣 β†’ (Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄) ↔ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)))
1916, 18anbi12d 632 . . . . . . . . . . 11 (𝑑 = 𝑣 β†’ ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) ↔ (Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄))))
20 oveq1 7411 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑣 β†’ (𝑑 ∨ π‘ˆ) = (𝑣 ∨ π‘ˆ))
21 oveq2 7412 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑣 β†’ (𝑃 ∨ 𝑑) = (𝑃 ∨ 𝑣))
2221oveq1d 7419 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑣 β†’ ((𝑃 ∨ 𝑑) ∧ π‘Š) = ((𝑃 ∨ 𝑣) ∧ π‘Š))
2322oveq2d 7420 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑣 β†’ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)) = (𝑄 ∨ ((𝑃 ∨ 𝑣) ∧ π‘Š)))
2420, 23oveq12d 7422 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑣 β†’ ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š))) = ((𝑣 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑣) ∧ π‘Š))))
25 cdleme40.e . . . . . . . . . . . . . . . 16 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
26 cdleme40r.t . . . . . . . . . . . . . . . 16 𝑇 = ((𝑣 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑣) ∧ π‘Š)))
2724, 25, 263eqtr4g 2798 . . . . . . . . . . . . . . 15 (𝑑 = 𝑣 β†’ 𝐸 = 𝑇)
28 oveq2 7412 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑣 β†’ (𝑒 ∨ 𝑑) = (𝑒 ∨ 𝑣))
2928oveq1d 7419 . . . . . . . . . . . . . . 15 (𝑑 = 𝑣 β†’ ((𝑒 ∨ 𝑑) ∧ π‘Š) = ((𝑒 ∨ 𝑣) ∧ π‘Š))
3027, 29oveq12d 7422 . . . . . . . . . . . . . 14 (𝑑 = 𝑣 β†’ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)) = (𝑇 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
3130oveq2d 7420 . . . . . . . . . . . . 13 (𝑑 = 𝑣 β†’ ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))) = ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š))))
32 cdleme40r.x . . . . . . . . . . . . 13 𝑋 = ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
3331, 32eqtr4di 2791 . . . . . . . . . . . 12 (𝑑 = 𝑣 β†’ ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))) = 𝑋)
3433eqeq2d 2744 . . . . . . . . . . 11 (𝑑 = 𝑣 β†’ (𝑧 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))) ↔ 𝑧 = 𝑋))
3519, 34imbi12d 345 . . . . . . . . . 10 (𝑑 = 𝑣 β†’ (((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))) ↔ ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋)))
3635cbvralvw 3235 . . . . . . . . 9 (βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))) ↔ βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋))
3714, 36bitrdi 287 . . . . . . . 8 (𝑦 = 𝑧 β†’ (βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š)))) ↔ βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋)))
3837cbvriotavw 7370 . . . . . . 7 (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑒 ∨ 𝑑) ∧ π‘Š))))) = (℩𝑧 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋))
3911, 38eqtrdi 2789 . . . . . 6 (𝑠 = 𝑒 β†’ (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺)) = (℩𝑧 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋)))
40 cdleme40.i . . . . . 6 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺))
41 cdleme40r.o . . . . . 6 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑧 = 𝑋))
4239, 40, 413eqtr4g 2798 . . . . 5 (𝑠 = 𝑒 β†’ 𝐼 = 𝑂)
43 oveq1 7411 . . . . . . 7 (𝑠 = 𝑒 β†’ (𝑠 ∨ π‘ˆ) = (𝑒 ∨ π‘ˆ))
44 oveq2 7412 . . . . . . . . 9 (𝑠 = 𝑒 β†’ (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑒))
4544oveq1d 7419 . . . . . . . 8 (𝑠 = 𝑒 β†’ ((𝑃 ∨ 𝑠) ∧ π‘Š) = ((𝑃 ∨ 𝑒) ∧ π‘Š))
4645oveq2d 7420 . . . . . . 7 (𝑠 = 𝑒 β†’ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)) = (𝑄 ∨ ((𝑃 ∨ 𝑒) ∧ π‘Š)))
4743, 46oveq12d 7422 . . . . . 6 (𝑠 = 𝑒 β†’ ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š))) = ((𝑒 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑒) ∧ π‘Š))))
48 cdleme40.d . . . . . 6 𝐷 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
49 cdleme40r.y . . . . . 6 π‘Œ = ((𝑒 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑒) ∧ π‘Š)))
5047, 48, 493eqtr4g 2798 . . . . 5 (𝑠 = 𝑒 β†’ 𝐷 = π‘Œ)
511, 42, 50ifbieq12d 4555 . . . 4 (𝑠 = 𝑒 β†’ if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷) = if(𝑒 ≀ (𝑃 ∨ 𝑄), 𝑂, π‘Œ))
52 cdleme40.n . . . 4 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷)
53 cdleme40r.v . . . 4 𝑉 = if(𝑒 ≀ (𝑃 ∨ 𝑄), 𝑂, π‘Œ)
5451, 52, 533eqtr4g 2798 . . 3 (𝑠 = 𝑒 β†’ 𝑁 = 𝑉)
5554cbvcsbv 3904 . 2 ⦋𝑅 / π‘ β¦Œπ‘ = ⦋𝑅 / π‘’β¦Œπ‘‰
5655a1i 11 1 (𝑅 ∈ 𝐴 β†’ ⦋𝑅 / π‘ β¦Œπ‘ = ⦋𝑅 / π‘’β¦Œπ‘‰)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  β¦‹csb 3892  ifcif 4527   class class class wbr 5147  β€˜cfv 6540  β„©crio 7359  (class class class)co 7404  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Atomscatm 38071  LHypclh 38793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-riota 7360  df-ov 7407
This theorem is referenced by:  cdleme40w  39279
  Copyright terms: Public domain W3C validator