Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   GIF version

Theorem cdleme40v 37765
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in 𝑆 / 𝑢𝑉 (but we use 𝑅 / 𝑢𝑉 for convenience since we have its hypotheses available). (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme40r.y 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme40r.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40r.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40r.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40r.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
Assertion
Ref Expression
cdleme40v (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Distinct variable groups:   𝑣,𝑢,𝑧,𝐴   𝑢,𝐵,𝑣,𝑧   𝑣,𝐻,𝑧   𝑢, ,𝑣,𝑧   𝑣,𝐾,𝑧   𝑢, ,𝑣,𝑧   𝑢, ,𝑣,𝑧   𝑢,𝑃,𝑣,𝑧   𝑢,𝑄,𝑣,𝑧   𝑣,𝑅,𝑧   𝑢,𝑇   𝑣,𝑈,𝑧   𝑢,𝑊,𝑣,𝑧,𝑠,𝑡,𝑦   𝐴,𝑠   𝑦,𝑡,𝐴   𝐵,𝑠,𝑡,𝑦   𝐸,𝑠   𝑡,𝐻,𝑦   ,𝑠,𝑡,𝑦   𝑡,𝐾,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝑣,𝑡,𝑦   𝑇,𝑠,𝑡,𝑦   𝑣,𝐸,𝑧   𝑢,𝑁,𝑣   𝑢,𝑅   𝑉,𝑠   𝑡,𝑋,𝑦   𝑢,𝑠,𝑧,𝑡,𝑦
Allowed substitution hints:   𝐷(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑢,𝑡)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡)   𝑋(𝑧,𝑣,𝑢,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 5033 . . . . 5 (𝑠 = 𝑢 → (𝑠 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
2 cdleme40.g . . . . . . . . . . . 12 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
3 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑠 𝑡) = (𝑢 𝑡))
43oveq1d 7150 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑠 𝑡) 𝑊) = ((𝑢 𝑡) 𝑊))
54oveq2d 7151 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (𝐸 ((𝑠 𝑡) 𝑊)) = (𝐸 ((𝑢 𝑡) 𝑊)))
65oveq2d 7151 . . . . . . . . . . . 12 (𝑠 = 𝑢 → ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
72, 6syl5eq 2845 . . . . . . . . . . 11 (𝑠 = 𝑢𝐺 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
87eqeq2d 2809 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑦 = 𝐺𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
98imbi2d 344 . . . . . . . . 9 (𝑠 = 𝑢 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
109ralbidv 3162 . . . . . . . 8 (𝑠 = 𝑢 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1110riotabidv 7095 . . . . . . 7 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
12 eqeq1 2802 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
1312imbi2d 344 . . . . . . . . . 10 (𝑦 = 𝑧 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1413ralbidv 3162 . . . . . . . . 9 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
15 breq1 5033 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 𝑊𝑣 𝑊))
1615notbid 321 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 𝑊 ↔ ¬ 𝑣 𝑊))
17 breq1 5033 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
1817notbid 321 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
1916, 18anbi12d 633 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) ↔ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))))
20 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑡 𝑈) = (𝑣 𝑈))
21 oveq2 7143 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑣 → (𝑃 𝑡) = (𝑃 𝑣))
2221oveq1d 7150 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑣 → ((𝑃 𝑡) 𝑊) = ((𝑃 𝑣) 𝑊))
2322oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑄 ((𝑃 𝑡) 𝑊)) = (𝑄 ((𝑃 𝑣) 𝑊)))
2420, 23oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊))))
25 cdleme40.e . . . . . . . . . . . . . . . 16 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
26 cdleme40r.t . . . . . . . . . . . . . . . 16 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
2724, 25, 263eqtr4g 2858 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣𝐸 = 𝑇)
28 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → (𝑢 𝑡) = (𝑢 𝑣))
2928oveq1d 7150 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → ((𝑢 𝑡) 𝑊) = ((𝑢 𝑣) 𝑊))
3027, 29oveq12d 7153 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝐸 ((𝑢 𝑡) 𝑊)) = (𝑇 ((𝑢 𝑣) 𝑊)))
3130oveq2d 7151 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊))))
32 cdleme40r.x . . . . . . . . . . . . 13 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
3331, 32eqtr4di 2851 . . . . . . . . . . . 12 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = 𝑋)
3433eqeq2d 2809 . . . . . . . . . . 11 (𝑡 = 𝑣 → (𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = 𝑋))
3519, 34imbi12d 348 . . . . . . . . . 10 (𝑡 = 𝑣 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3635cbvralvw 3396 . . . . . . . . 9 (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3714, 36syl6bb 290 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3837cbvriotavw 7103 . . . . . . 7 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3911, 38eqtrdi 2849 . . . . . 6 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
40 cdleme40.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
41 cdleme40r.o . . . . . 6 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
4239, 40, 413eqtr4g 2858 . . . . 5 (𝑠 = 𝑢𝐼 = 𝑂)
43 oveq1 7142 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 𝑈) = (𝑢 𝑈))
44 oveq2 7143 . . . . . . . . 9 (𝑠 = 𝑢 → (𝑃 𝑠) = (𝑃 𝑢))
4544oveq1d 7150 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑢) 𝑊))
4645oveq2d 7151 . . . . . . 7 (𝑠 = 𝑢 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑢) 𝑊)))
4743, 46oveq12d 7153 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊))))
48 cdleme40.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
49 cdleme40r.y . . . . . 6 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
5047, 48, 493eqtr4g 2858 . . . . 5 (𝑠 = 𝑢𝐷 = 𝑌)
511, 42, 50ifbieq12d 4452 . . . 4 (𝑠 = 𝑢 → if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌))
52 cdleme40.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
53 cdleme40r.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
5451, 52, 533eqtr4g 2858 . . 3 (𝑠 = 𝑢𝑁 = 𝑉)
5554cbvcsbv 3840 . 2 𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉
5655a1i 11 1 (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  csb 3828  ifcif 4425   class class class wbr 5030  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Atomscatm 36559  LHypclh 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-un 3886  df-in 3888  df-ss 3898  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-riota 7093  df-ov 7138
This theorem is referenced by:  cdleme40w  37766
  Copyright terms: Public domain W3C validator