Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   GIF version

Theorem cdleme40v 38483
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in 𝑆 / 𝑢𝑉 (but we use 𝑅 / 𝑢𝑉 for convenience since we have its hypotheses available). (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme40r.y 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme40r.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40r.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40r.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40r.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
Assertion
Ref Expression
cdleme40v (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Distinct variable groups:   𝑣,𝑢,𝑧,𝐴   𝑢,𝐵,𝑣,𝑧   𝑣,𝐻,𝑧   𝑢, ,𝑣,𝑧   𝑣,𝐾,𝑧   𝑢, ,𝑣,𝑧   𝑢, ,𝑣,𝑧   𝑢,𝑃,𝑣,𝑧   𝑢,𝑄,𝑣,𝑧   𝑣,𝑅,𝑧   𝑢,𝑇   𝑣,𝑈,𝑧   𝑢,𝑊,𝑣,𝑧,𝑠,𝑡,𝑦   𝐴,𝑠   𝑦,𝑡,𝐴   𝐵,𝑠,𝑡,𝑦   𝐸,𝑠   𝑡,𝐻,𝑦   ,𝑠,𝑡,𝑦   𝑡,𝐾,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝑣,𝑡,𝑦   𝑇,𝑠,𝑡,𝑦   𝑣,𝐸,𝑧   𝑢,𝑁,𝑣   𝑢,𝑅   𝑉,𝑠   𝑡,𝑋,𝑦   𝑢,𝑠,𝑧,𝑡,𝑦
Allowed substitution hints:   𝐷(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑢,𝑡)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡)   𝑋(𝑧,𝑣,𝑢,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 5077 . . . . 5 (𝑠 = 𝑢 → (𝑠 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
2 cdleme40.g . . . . . . . . . . . 12 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
3 oveq1 7282 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑠 𝑡) = (𝑢 𝑡))
43oveq1d 7290 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑠 𝑡) 𝑊) = ((𝑢 𝑡) 𝑊))
54oveq2d 7291 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (𝐸 ((𝑠 𝑡) 𝑊)) = (𝐸 ((𝑢 𝑡) 𝑊)))
65oveq2d 7291 . . . . . . . . . . . 12 (𝑠 = 𝑢 → ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
72, 6eqtrid 2790 . . . . . . . . . . 11 (𝑠 = 𝑢𝐺 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
87eqeq2d 2749 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑦 = 𝐺𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
98imbi2d 341 . . . . . . . . 9 (𝑠 = 𝑢 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
109ralbidv 3112 . . . . . . . 8 (𝑠 = 𝑢 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1110riotabidv 7234 . . . . . . 7 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
12 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
1312imbi2d 341 . . . . . . . . . 10 (𝑦 = 𝑧 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1413ralbidv 3112 . . . . . . . . 9 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
15 breq1 5077 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 𝑊𝑣 𝑊))
1615notbid 318 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 𝑊 ↔ ¬ 𝑣 𝑊))
17 breq1 5077 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
1817notbid 318 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
1916, 18anbi12d 631 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) ↔ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))))
20 oveq1 7282 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑡 𝑈) = (𝑣 𝑈))
21 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑣 → (𝑃 𝑡) = (𝑃 𝑣))
2221oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑣 → ((𝑃 𝑡) 𝑊) = ((𝑃 𝑣) 𝑊))
2322oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑄 ((𝑃 𝑡) 𝑊)) = (𝑄 ((𝑃 𝑣) 𝑊)))
2420, 23oveq12d 7293 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊))))
25 cdleme40.e . . . . . . . . . . . . . . . 16 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
26 cdleme40r.t . . . . . . . . . . . . . . . 16 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
2724, 25, 263eqtr4g 2803 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣𝐸 = 𝑇)
28 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → (𝑢 𝑡) = (𝑢 𝑣))
2928oveq1d 7290 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → ((𝑢 𝑡) 𝑊) = ((𝑢 𝑣) 𝑊))
3027, 29oveq12d 7293 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝐸 ((𝑢 𝑡) 𝑊)) = (𝑇 ((𝑢 𝑣) 𝑊)))
3130oveq2d 7291 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊))))
32 cdleme40r.x . . . . . . . . . . . . 13 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
3331, 32eqtr4di 2796 . . . . . . . . . . . 12 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = 𝑋)
3433eqeq2d 2749 . . . . . . . . . . 11 (𝑡 = 𝑣 → (𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = 𝑋))
3519, 34imbi12d 345 . . . . . . . . . 10 (𝑡 = 𝑣 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3635cbvralvw 3383 . . . . . . . . 9 (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3714, 36bitrdi 287 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3837cbvriotavw 7242 . . . . . . 7 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3911, 38eqtrdi 2794 . . . . . 6 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
40 cdleme40.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
41 cdleme40r.o . . . . . 6 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
4239, 40, 413eqtr4g 2803 . . . . 5 (𝑠 = 𝑢𝐼 = 𝑂)
43 oveq1 7282 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 𝑈) = (𝑢 𝑈))
44 oveq2 7283 . . . . . . . . 9 (𝑠 = 𝑢 → (𝑃 𝑠) = (𝑃 𝑢))
4544oveq1d 7290 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑢) 𝑊))
4645oveq2d 7291 . . . . . . 7 (𝑠 = 𝑢 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑢) 𝑊)))
4743, 46oveq12d 7293 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊))))
48 cdleme40.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
49 cdleme40r.y . . . . . 6 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
5047, 48, 493eqtr4g 2803 . . . . 5 (𝑠 = 𝑢𝐷 = 𝑌)
511, 42, 50ifbieq12d 4487 . . . 4 (𝑠 = 𝑢 → if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌))
52 cdleme40.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
53 cdleme40r.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
5451, 52, 533eqtr4g 2803 . . 3 (𝑠 = 𝑢𝑁 = 𝑉)
5554cbvcsbv 3844 . 2 𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉
5655a1i 11 1 (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  csb 3832  ifcif 4459   class class class wbr 5074  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-riota 7232  df-ov 7278
This theorem is referenced by:  cdleme40w  38484
  Copyright terms: Public domain W3C validator