Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40v Structured version   Visualization version   GIF version

Theorem cdleme40v 40470
Description: Part of proof of Lemma E in [Crawley] p. 113. Change bound variables in 𝑆 / 𝑢𝑉 (but we use 𝑅 / 𝑢𝑉 for convenience since we have its hypotheses available). (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme40r.y 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
cdleme40r.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40r.x 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
cdleme40r.o 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
cdleme40r.v 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
Assertion
Ref Expression
cdleme40v (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Distinct variable groups:   ,𝑠,𝑡,𝑦   𝑧,𝑈   𝑧,𝑅   𝑇,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑣,𝑦   𝑄,𝑠,𝑡,𝑦   𝑧,𝐾   𝑢,𝑃,𝑧   𝑢,𝑄,𝑣,𝑧   𝑧,𝐻   𝑃,𝑠,𝑡,𝑣,𝑦   𝐸,𝑠   𝑢,𝑊,𝑧,𝑠,𝑡,𝑣,𝑦   𝐵,𝑠,𝑡,𝑦,𝑢,𝑣,𝑧   𝑦,𝑌   𝑢, ,𝑧,𝑠,𝑡,𝑣,𝑦   𝑢, ,𝑧,𝑠,𝑡,𝑣,𝑦   𝐴,𝑠,𝑡,𝑣,𝑦   𝑢, ,𝑣,𝑧   𝑡,𝑈,𝑣,𝑦   𝑡,𝐾,𝑣,𝑦   𝑡,𝐻,𝑣,𝑦   𝑢,𝐴,𝑧   𝑢,𝑇   𝑣,𝐸,𝑧   𝑢,𝑁,𝑣   𝑢,𝑅   𝑉,𝑠   𝑡,𝑋,𝑦   𝑢,𝑠,𝑧,𝑡,𝑦
Allowed substitution hints:   𝐷(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑇(𝑧,𝑣)   𝑈(𝑢,𝑠)   𝐸(𝑦,𝑢,𝑡)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐻(𝑢,𝑠)   𝐼(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝐾(𝑢,𝑠)   𝑁(𝑦,𝑧,𝑡,𝑠)   𝑂(𝑦,𝑧,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑦,𝑧,𝑣,𝑢,𝑡)   𝑋(𝑧,𝑣,𝑢,𝑠)   𝑌(𝑧,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem cdleme40v
StepHypRef Expression
1 breq1 5113 . . . . 5 (𝑠 = 𝑢 → (𝑠 (𝑃 𝑄) ↔ 𝑢 (𝑃 𝑄)))
2 cdleme40.g . . . . . . . . . . . 12 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
3 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑠 𝑡) = (𝑢 𝑡))
43oveq1d 7405 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑠 𝑡) 𝑊) = ((𝑢 𝑡) 𝑊))
54oveq2d 7406 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (𝐸 ((𝑠 𝑡) 𝑊)) = (𝐸 ((𝑢 𝑡) 𝑊)))
65oveq2d 7406 . . . . . . . . . . . 12 (𝑠 = 𝑢 → ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
72, 6eqtrid 2777 . . . . . . . . . . 11 (𝑠 = 𝑢𝐺 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))
87eqeq2d 2741 . . . . . . . . . 10 (𝑠 = 𝑢 → (𝑦 = 𝐺𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
98imbi2d 340 . . . . . . . . 9 (𝑠 = 𝑢 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
109ralbidv 3157 . . . . . . . 8 (𝑠 = 𝑢 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1110riotabidv 7349 . . . . . . 7 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
12 eqeq1 2734 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))))
1312imbi2d 340 . . . . . . . . . 10 (𝑦 = 𝑧 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
1413ralbidv 3157 . . . . . . . . 9 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))))
15 breq1 5113 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 𝑊𝑣 𝑊))
1615notbid 318 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 𝑊 ↔ ¬ 𝑣 𝑊))
17 breq1 5113 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → (𝑡 (𝑃 𝑄) ↔ 𝑣 (𝑃 𝑄)))
1817notbid 318 . . . . . . . . . . . 12 (𝑡 = 𝑣 → (¬ 𝑡 (𝑃 𝑄) ↔ ¬ 𝑣 (𝑃 𝑄)))
1916, 18anbi12d 632 . . . . . . . . . . 11 (𝑡 = 𝑣 → ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) ↔ (¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))))
20 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑡 𝑈) = (𝑣 𝑈))
21 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑣 → (𝑃 𝑡) = (𝑃 𝑣))
2221oveq1d 7405 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑣 → ((𝑃 𝑡) 𝑊) = ((𝑃 𝑣) 𝑊))
2322oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑣 → (𝑄 ((𝑃 𝑡) 𝑊)) = (𝑄 ((𝑃 𝑣) 𝑊)))
2420, 23oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊))))
25 cdleme40.e . . . . . . . . . . . . . . . 16 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
26 cdleme40r.t . . . . . . . . . . . . . . . 16 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
2724, 25, 263eqtr4g 2790 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣𝐸 = 𝑇)
28 oveq2 7398 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑣 → (𝑢 𝑡) = (𝑢 𝑣))
2928oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑡 = 𝑣 → ((𝑢 𝑡) 𝑊) = ((𝑢 𝑣) 𝑊))
3027, 29oveq12d 7408 . . . . . . . . . . . . . 14 (𝑡 = 𝑣 → (𝐸 ((𝑢 𝑡) 𝑊)) = (𝑇 ((𝑢 𝑣) 𝑊)))
3130oveq2d 7406 . . . . . . . . . . . . 13 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊))))
32 cdleme40r.x . . . . . . . . . . . . 13 𝑋 = ((𝑃 𝑄) (𝑇 ((𝑢 𝑣) 𝑊)))
3331, 32eqtr4di 2783 . . . . . . . . . . . 12 (𝑡 = 𝑣 → ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) = 𝑋)
3433eqeq2d 2741 . . . . . . . . . . 11 (𝑡 = 𝑣 → (𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))) ↔ 𝑧 = 𝑋))
3519, 34imbi12d 344 . . . . . . . . . 10 (𝑡 = 𝑣 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3635cbvralvw 3216 . . . . . . . . 9 (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑧 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3714, 36bitrdi 287 . . . . . . . 8 (𝑦 = 𝑧 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊)))) ↔ ∀𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
3837cbvriotavw 7357 . . . . . . 7 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = ((𝑃 𝑄) (𝐸 ((𝑢 𝑡) 𝑊))))) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
3911, 38eqtrdi 2781 . . . . . 6 (𝑠 = 𝑢 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋)))
40 cdleme40.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
41 cdleme40r.o . . . . . 6 𝑂 = (𝑧𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)) → 𝑧 = 𝑋))
4239, 40, 413eqtr4g 2790 . . . . 5 (𝑠 = 𝑢𝐼 = 𝑂)
43 oveq1 7397 . . . . . . 7 (𝑠 = 𝑢 → (𝑠 𝑈) = (𝑢 𝑈))
44 oveq2 7398 . . . . . . . . 9 (𝑠 = 𝑢 → (𝑃 𝑠) = (𝑃 𝑢))
4544oveq1d 7405 . . . . . . . 8 (𝑠 = 𝑢 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑢) 𝑊))
4645oveq2d 7406 . . . . . . 7 (𝑠 = 𝑢 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑢) 𝑊)))
4743, 46oveq12d 7408 . . . . . 6 (𝑠 = 𝑢 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊))))
48 cdleme40.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
49 cdleme40r.y . . . . . 6 𝑌 = ((𝑢 𝑈) (𝑄 ((𝑃 𝑢) 𝑊)))
5047, 48, 493eqtr4g 2790 . . . . 5 (𝑠 = 𝑢𝐷 = 𝑌)
511, 42, 50ifbieq12d 4520 . . . 4 (𝑠 = 𝑢 → if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌))
52 cdleme40.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
53 cdleme40r.v . . . 4 𝑉 = if(𝑢 (𝑃 𝑄), 𝑂, 𝑌)
5451, 52, 533eqtr4g 2790 . . 3 (𝑠 = 𝑢𝑁 = 𝑉)
5554cbvcsbv 3877 . 2 𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉
5655a1i 11 1 (𝑅𝐴𝑅 / 𝑠𝑁 = 𝑅 / 𝑢𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  csb 3865  ifcif 4491   class class class wbr 5110  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Atomscatm 39263  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-riota 7347  df-ov 7393
This theorem is referenced by:  cdleme40w  40471
  Copyright terms: Public domain W3C validator