Step | Hyp | Ref
| Expression |
1 | | dmeq 5812 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → dom 𝑥 = dom 𝑦) |
2 | 1 | dmeqd 5814 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → dom dom 𝑥 = dom dom 𝑦) |
3 | | oveq 7281 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)) |
4 | 3 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑦𝑗))) |
5 | 4 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑘)) |
6 | 2, 2, 5 | mpoeq123dv 7350 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘))) |
7 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑙 → ((coe1‘(𝑖𝑦𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑙)) |
8 | 7 | mpoeq3dv 7354 |
. . . . . . 7
⊢ (𝑘 = 𝑙 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) |
9 | 6, 8 | cbvmpov 7370 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑦 ∈ 𝐵, 𝑙 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) |
10 | | dmexg 7750 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → dom 𝑦 ∈ V) |
11 | 10 | dmexd 7752 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → dom dom 𝑦 ∈ V) |
12 | 11, 11 | jca 512 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V)) |
13 | 12 | ad2antrl 725 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑙 ∈ 𝐼)) → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V)) |
14 | | mpoexga 7918 |
. . . . . . . 8
⊢ ((dom dom
𝑦 ∈ V ∧ dom dom
𝑦 ∈ V) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V) |
15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑙 ∈ 𝐼)) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V) |
16 | 15 | ralrimivva 3123 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) →
∀𝑦 ∈ 𝐵 ∀𝑙 ∈ 𝐼 (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V) |
17 | | simprr 770 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → 𝐼 ≠ ∅) |
18 | | nn0ex 12239 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
19 | 18 | ssex 5245 |
. . . . . . 7
⊢ (𝐼 ⊆ ℕ0
→ 𝐼 ∈
V) |
20 | 19 | ad2antrl 725 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ V) |
21 | | simp3 1137 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
22 | 21 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → 𝑀 ∈ 𝐵) |
23 | 9, 16, 17, 20, 22 | mpocurryvald 8086 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑙 ∈ 𝐼 ↦ ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))) |
24 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑖𝑦𝑗))‘𝑙) = ((coe1‘(𝑖𝑦𝑗))‘𝑘)) |
25 | 24 | mpoeq3dv 7354 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘))) |
26 | 25 | csbeq2dv 3839 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘))) |
27 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
28 | | eqcom 2745 |
. . . . . . . . 9
⊢ ((𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) ↔ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
29 | 6, 27, 28 | 3imtr3i 291 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
30 | 29 | cbvcsbv 3844 |
. . . . . . 7
⊢
⦋𝑀 /
𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) |
31 | 26, 30 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑙 = 𝑘 → ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
32 | 31 | cbvmptv 5187 |
. . . . 5
⊢ (𝑙 ∈ 𝐼 ↦ ⦋𝑀 / 𝑦⦌(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
33 | 23, 32 | eqtrdi 2794 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))) |
34 | | dmeq 5812 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → dom 𝑥 = dom 𝑀) |
35 | 34 | dmeqd 5814 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → dom dom 𝑥 = dom dom 𝑀) |
36 | | oveq 7281 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → (𝑖𝑥𝑗) = (𝑖𝑀𝑗)) |
37 | 36 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
38 | 37 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
39 | 35, 35, 38 | mpoeq123dv 7350 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
40 | 39 | adantl 482 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 = 𝑀) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
41 | 21, 40 | csbied 3870 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
42 | | pmatcollpw.c |
. . . . . . . . . . . . 13
⊢ 𝐶 = (𝑁 Mat 𝑃) |
43 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑃) =
(Base‘𝑃) |
44 | | pmatcollpw.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐶) |
45 | 42, 43, 44 | matbas2i 21571 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁))) |
46 | | elmapi 8637 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃)) |
47 | | fdm 6609 |
. . . . . . . . . . . . . 14
⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom 𝑀 = (𝑁 × 𝑁)) |
48 | 47 | dmeqd 5814 |
. . . . . . . . . . . . 13
⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom dom 𝑀 = dom (𝑁 × 𝑁)) |
49 | | dmxpid 5839 |
. . . . . . . . . . . . 13
⊢ dom
(𝑁 × 𝑁) = 𝑁 |
50 | 48, 49 | eqtr2di 2795 |
. . . . . . . . . . . 12
⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → 𝑁 = dom dom 𝑀) |
51 | 45, 46, 50 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝐵 → 𝑁 = dom dom 𝑀) |
52 | 51 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 = dom dom 𝑀) |
53 | 52 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → 𝑁 = dom dom 𝑀) |
54 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) |
55 | 54 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
56 | 55 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
57 | 56 | fveq1d 6776 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
58 | 53, 53, 57 | mpoeq123dv 7350 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
59 | 21, 58 | csbied 3870 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
60 | 41, 59 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
61 | 60 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) →
⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
62 | 61 | mpteq2dv 5176 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑥⦌(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
63 | 33, 62 | eqtrd 2778 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
64 | | oveq 7281 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
65 | 64 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
66 | 65 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
67 | 66 | fveq1d 6776 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘)) |
68 | 67 | mpoeq3dv 7354 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑚 = 𝑀) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
69 | 21, 68 | csbied 3870 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
70 | 69 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘))) |
71 | | pmatcollpw3.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
72 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
73 | | pmatcollpw3.d |
. . . . . . 7
⊢ 𝐷 = (Base‘𝐴) |
74 | | simpll1 1211 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑁 ∈ Fin) |
75 | | simpll2 1212 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CRing) |
76 | | simp2 1136 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
77 | | simp3 1137 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
78 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑀 ∈ 𝐵) |
79 | 78 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
80 | 42, 43, 44, 76, 77, 79 | matecld 21575 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃)) |
81 | | ssel 3914 |
. . . . . . . . . . 11
⊢ (𝐼 ⊆ ℕ0
→ (𝑘 ∈ 𝐼 → 𝑘 ∈
ℕ0)) |
82 | 81 | ad2antrl 725 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 → 𝑘 ∈
ℕ0)) |
83 | 82 | imp 407 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ ℕ0) |
84 | 83 | 3ad2ant1 1132 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ ℕ0) |
85 | | eqid 2738 |
. . . . . . . . 9
⊢
(coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗)) |
86 | | pmatcollpw.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
87 | 85, 43, 86, 72 | coe1fvalcl 21383 |
. . . . . . . 8
⊢ (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) →
((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅)) |
88 | 80, 84, 87 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅)) |
89 | 71, 72, 73, 74, 75, 88 | matbas2d 21572 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)) ∈ 𝐷) |
90 | 70, 89 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ 𝐼) → ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) ∈ 𝐷) |
91 | 90 | fmpttd 6989 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼⟶𝐷) |
92 | 73 | fvexi 6788 |
. . . . . 6
⊢ 𝐷 ∈ V |
93 | 92 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐷 ∈ V) |
94 | 19 | adantr 481 |
. . . . 5
⊢ ((𝐼 ⊆ ℕ0
∧ 𝐼 ≠ ∅)
→ 𝐼 ∈
V) |
95 | | elmapg 8628 |
. . . . 5
⊢ ((𝐷 ∈ V ∧ 𝐼 ∈ V) → ((𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷 ↑m 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼⟶𝐷)) |
96 | 93, 94, 95 | syl2an 596 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → ((𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷 ↑m 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼⟶𝐷)) |
97 | 91, 96 | mpbird 256 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑘 ∈ 𝐼 ↦ ⦋𝑀 / 𝑚⦌(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷 ↑m 𝐼)) |
98 | 63, 97 | eqeltrd 2839 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (curry
(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) ∈ (𝐷 ↑m 𝐼)) |
99 | | fveq1 6773 |
. . . . . . . . . . 11
⊢ (𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) → (𝑓‘𝑛) = ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛)) |
100 | 99 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑓‘𝑛) = ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛)) |
101 | 100 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) = ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛)) |
102 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
103 | | dmexg 7750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐵 → dom 𝑥 ∈ V) |
104 | 103 | dmexd 7752 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐵 → dom dom 𝑥 ∈ V) |
105 | 104, 104 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐵 → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V)) |
106 | 105 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑘 ∈ 𝐼)) → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V)) |
107 | | mpoexga 7918 |
. . . . . . . . . . . . . 14
⊢ ((dom dom
𝑥 ∈ V ∧ dom dom
𝑥 ∈ V) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑘 ∈ 𝐼)) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V) |
109 | 108 | ralrimivva 3123 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑘 ∈ 𝐼 (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V) |
110 | 20 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 𝐼 ∈ V) |
111 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 𝑀 ∈ 𝐵) |
112 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 𝑛 ∈ 𝐼) |
113 | 102, 109,
110, 111, 112 | fvmpocurryd 8087 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛)) |
114 | | df-decpmat 21912 |
. . . . . . . . . . . . . 14
⊢
decompPMat = (𝑥 ∈ V,
𝑘 ∈
ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) |
115 | 114 | reseq1i 5887 |
. . . . . . . . . . . . 13
⊢ (
decompPMat ↾ (𝐵
× 𝐼)) = ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) |
116 | | ssv 3945 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 ⊆ V |
117 | 116 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐵 ⊆ V) |
118 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ⊆ ℕ0
∧ 𝐼 ≠ ∅)
→ 𝐼 ⊆
ℕ0) |
119 | 117, 118 | anim12i 613 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝐵 ⊆ V ∧ 𝐼 ⊆
ℕ0)) |
120 | 119 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝐵 ⊆ V ∧ 𝐼 ⊆
ℕ0)) |
121 | | resmpo 7394 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0)
→ ((𝑥 ∈ V, 𝑘 ∈ ℕ0
↦ (𝑖 ∈ dom dom
𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))) |
123 | 115, 122 | eqtr2id 2791 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = ( decompPMat ↾ (𝐵 × 𝐼))) |
124 | 123 | oveqd 7292 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑀(𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
125 | 113, 124 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
126 | 125 | adantlr 712 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → ((curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
127 | 101, 126 | eqtrd 2778 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) |
128 | 127 | fveq2d 6778 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑇‘(𝑓‘𝑛)) = (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))) |
129 | 21 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → 𝑀 ∈ 𝐵) |
130 | | ovres 7438 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑛 ∈ 𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛)) |
131 | 129, 130 | sylan 580 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛)) |
132 | 131 | fveq2d 6778 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛))) |
133 | 128, 132 | eqtrd 2778 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → (𝑇‘(𝑓‘𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛))) |
134 | 133 | oveq2d 7291 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛 ∈ 𝐼) → ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))) = ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))) |
135 | 134 | mpteq2dva 5174 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))) = (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) |
136 | 135 | oveq2d 7291 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))) = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) |
137 | 136 | eqeq2d 2749 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥 ∈ 𝐵, 𝑘 ∈ 𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))))) |
138 | 98, 137 | rspcedv 3554 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m 𝐼)𝑀 = (𝐶 Σg (𝑛 ∈ 𝐼 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |