MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3lem Structured version   Visualization version   GIF version

Theorem pmatcollpw3lem 22668
Description: Lemma for pmatcollpw3 22669 and pmatcollpw3fi 22670: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝐼,𝑛   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑛)   𝐷(𝑛)   𝑃(𝑓)   𝑇(𝑛)   (𝑛)

Proof of Theorem pmatcollpw3lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5846 . . . . . . . . 9 (𝑥 = 𝑦 → dom 𝑥 = dom 𝑦)
21dmeqd 5848 . . . . . . . 8 (𝑥 = 𝑦 → dom dom 𝑥 = dom dom 𝑦)
3 oveq 7355 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑖𝑥𝑗) = (𝑖𝑦𝑗))
43fveq2d 6826 . . . . . . . . 9 (𝑥 = 𝑦 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑦𝑗)))
54fveq1d 6824 . . . . . . . 8 (𝑥 = 𝑦 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑘))
62, 2, 5mpoeq123dv 7424 . . . . . . 7 (𝑥 = 𝑦 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
7 fveq2 6822 . . . . . . . 8 (𝑘 = 𝑙 → ((coe1‘(𝑖𝑦𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑙))
87mpoeq3dv 7428 . . . . . . 7 (𝑘 = 𝑙 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))
96, 8cbvmpov 7444 . . . . . 6 (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑦𝐵, 𝑙𝐼 ↦ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))
10 dmexg 7834 . . . . . . . . . . 11 (𝑦𝐵 → dom 𝑦 ∈ V)
1110dmexd 7836 . . . . . . . . . 10 (𝑦𝐵 → dom dom 𝑦 ∈ V)
1211, 11jca 511 . . . . . . . . 9 (𝑦𝐵 → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V))
1312ad2antrl 728 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ (𝑦𝐵𝑙𝐼)) → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V))
14 mpoexga 8012 . . . . . . . 8 ((dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
1513, 14syl 17 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ (𝑦𝐵𝑙𝐼)) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
1615ralrimivva 3172 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → ∀𝑦𝐵𝑙𝐼 (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
17 simprr 772 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝐼 ≠ ∅)
18 nn0ex 12390 . . . . . . . 8 0 ∈ V
1918ssex 5260 . . . . . . 7 (𝐼 ⊆ ℕ0𝐼 ∈ V)
2019ad2antrl 728 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝐼 ∈ V)
21 simp3 1138 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
2221adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝑀𝐵)
239, 16, 17, 20, 22mpocurryvald 8203 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑙𝐼𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))))
24 fveq2 6822 . . . . . . . . 9 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑦𝑗))‘𝑙) = ((coe1‘(𝑖𝑦𝑗))‘𝑘))
2524mpoeq3dv 7428 . . . . . . . 8 (𝑙 = 𝑘 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
2625csbeq2dv 3858 . . . . . . 7 (𝑙 = 𝑘𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = 𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
27 eqcom 2736 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
28 eqcom 2736 . . . . . . . . 9 ((𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) ↔ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
296, 27, 283imtr3i 291 . . . . . . . 8 (𝑦 = 𝑥 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3029cbvcsbv 3863 . . . . . . 7 𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))
3126, 30eqtrdi 2780 . . . . . 6 (𝑙 = 𝑘𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3231cbvmptv 5196 . . . . 5 (𝑙𝐼𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) = (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3323, 32eqtrdi 2780 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
34 dmeq 5846 . . . . . . . . . . 11 (𝑥 = 𝑀 → dom 𝑥 = dom 𝑀)
3534dmeqd 5848 . . . . . . . . . 10 (𝑥 = 𝑀 → dom dom 𝑥 = dom dom 𝑀)
36 oveq 7355 . . . . . . . . . . . 12 (𝑥 = 𝑀 → (𝑖𝑥𝑗) = (𝑖𝑀𝑗))
3736fveq2d 6826 . . . . . . . . . . 11 (𝑥 = 𝑀 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑀𝑗)))
3837fveq1d 6824 . . . . . . . . . 10 (𝑥 = 𝑀 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
3935, 35, 38mpoeq123dv 7424 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
4039adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑥 = 𝑀) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
4121, 40csbied 3887 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
42 pmatcollpw.c . . . . . . . . . . . . 13 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
44 pmatcollpw.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐶)
4542, 43, 44matbas2i 22307 . . . . . . . . . . . 12 (𝑀𝐵𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
46 elmapi 8776 . . . . . . . . . . . 12 (𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃))
47 fdm 6661 . . . . . . . . . . . . . 14 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom 𝑀 = (𝑁 × 𝑁))
4847dmeqd 5848 . . . . . . . . . . . . 13 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom dom 𝑀 = dom (𝑁 × 𝑁))
49 dmxpid 5872 . . . . . . . . . . . . 13 dom (𝑁 × 𝑁) = 𝑁
5048, 49eqtr2di 2781 . . . . . . . . . . . 12 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → 𝑁 = dom dom 𝑀)
5145, 46, 503syl 18 . . . . . . . . . . 11 (𝑀𝐵𝑁 = dom dom 𝑀)
52513ad2ant3 1135 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 = dom dom 𝑀)
5352adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → 𝑁 = dom dom 𝑀)
54 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
5554oveqd 7366 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
5655fveq2d 6826 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
5756fveq1d 6824 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
5853, 53, 57mpoeq123dv 7424 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
5921, 58csbied 3887 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
6041, 59eqtr4d 2767 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
6160adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
6261mpteq2dv 5186 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
6333, 62eqtrd 2764 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
64 oveq 7355 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
6564adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
6665fveq2d 6826 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
6766fveq1d 6824 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
6867mpoeq3dv 7428 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
6921, 68csbied 3887 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
7069ad2antrr 726 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
71 pmatcollpw3.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
72 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
73 pmatcollpw3.d . . . . . . 7 𝐷 = (Base‘𝐴)
74 simpll1 1213 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑁 ∈ Fin)
75 simpll2 1214 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑅 ∈ CRing)
76 simp2 1137 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
77 simp3 1138 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
7822adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀𝐵)
79783ad2ant1 1133 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
8042, 43, 44, 76, 77, 79matecld 22311 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
81 ssel 3929 . . . . . . . . . . 11 (𝐼 ⊆ ℕ0 → (𝑘𝐼𝑘 ∈ ℕ0))
8281ad2antrl 728 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑘 ∈ ℕ0))
8382imp 406 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑘 ∈ ℕ0)
84833ad2ant1 1133 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
85 eqid 2729 . . . . . . . . 9 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
86 pmatcollpw.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
8785, 43, 86, 72coe1fvalcl 22095 . . . . . . . 8 (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅))
8880, 84, 87syl2anc 584 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅))
8971, 72, 73, 74, 75, 88matbas2d 22308 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)) ∈ 𝐷)
9070, 89eqeltrd 2828 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) ∈ 𝐷)
9190fmpttd 7049 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷)
9273fvexi 6836 . . . . . 6 𝐷 ∈ V
9392a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐷 ∈ V)
9419adantr 480 . . . . 5 ((𝐼 ⊆ ℕ0𝐼 ≠ ∅) → 𝐼 ∈ V)
95 elmapg 8766 . . . . 5 ((𝐷 ∈ V ∧ 𝐼 ∈ V) → ((𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼) ↔ (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷))
9693, 94, 95syl2an 596 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → ((𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼) ↔ (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷))
9791, 96mpbird 257 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼))
9863, 97eqeltrd 2828 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) ∈ (𝐷m 𝐼))
99 fveq1 6821 . . . . . . . . . . 11 (𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
10099adantl 481 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
101100adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
102 eqid 2729 . . . . . . . . . . . 12 (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
103 dmexg 7834 . . . . . . . . . . . . . . . . 17 (𝑥𝐵 → dom 𝑥 ∈ V)
104103dmexd 7836 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → dom dom 𝑥 ∈ V)
105104, 104jca 511 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V))
106105ad2antrl 728 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑥𝐵𝑘𝐼)) → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V))
107 mpoexga 8012 . . . . . . . . . . . . . 14 ((dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
108106, 107syl 17 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑥𝐵𝑘𝐼)) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
109108ralrimivva 3172 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∀𝑥𝐵𝑘𝐼 (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
11020adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝐼 ∈ V)
11122adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝑀𝐵)
112 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝑛𝐼)
113102, 109, 110, 111, 112fvmpocurryd 8204 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀(𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛))
114 df-decpmat 22648 . . . . . . . . . . . . . 14 decompPMat = (𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
115114reseq1i 5926 . . . . . . . . . . . . 13 ( decompPMat ↾ (𝐵 × 𝐼)) = ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼))
116 ssv 3960 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ V
117116a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐵 ⊆ V)
118 simpl 482 . . . . . . . . . . . . . . . 16 ((𝐼 ⊆ ℕ0𝐼 ≠ ∅) → 𝐼 ⊆ ℕ0)
119117, 118anim12i 613 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0))
120119adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0))
121 resmpo 7469 . . . . . . . . . . . . . 14 ((𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
122120, 121syl 17 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
123115, 122eqtr2id 2777 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = ( decompPMat ↾ (𝐵 × 𝐼)))
124123oveqd 7366 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑀(𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
125113, 124eqtrd 2764 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
126125adantlr 715 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
127101, 126eqtrd 2764 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
128127fveq2d 6826 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)))
12921ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → 𝑀𝐵)
130 ovres 7515 . . . . . . . . 9 ((𝑀𝐵𝑛𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛))
131129, 130sylan 580 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛))
132131fveq2d 6826 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛)))
133128, 132eqtrd 2764 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛)))
134133oveq2d 7365 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))
135134mpteq2dva 5185 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))
136135oveq2d 7365 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
137136eqeq2d 2740 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
13898, 137rspcedv 3570 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  csb 3851  wss 3903  c0 4284  cmpt 5173   × cxp 5617  dom cdm 5619  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  curry ccur 8198  m cmap 8753  Fincfn 8872  0cn0 12384  Basecbs 17120   ·𝑠 cvsca 17165   Σg cgsu 17344  .gcmg 18946  mulGrpcmgp 20025  CRingccrg 20119  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060   Mat cmat 22292   matToPolyMat cmat2pmat 22589   decompPMat cdecpmat 22647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-cur 8200  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-psr 21816  df-opsr 21820  df-psr1 22062  df-ply1 22064  df-coe1 22065  df-mat 22293  df-decpmat 22648
This theorem is referenced by:  pmatcollpw3  22669  pmatcollpw3fi  22670
  Copyright terms: Public domain W3C validator