MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3lem Structured version   Visualization version   GIF version

Theorem pmatcollpw3lem 21385
Description: Lemma for pmatcollpw3 21386 and pmatcollpw3fi 21387: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝐼,𝑛   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑛)   𝐷(𝑛)   𝑃(𝑓)   𝑇(𝑛)   (𝑛)

Proof of Theorem pmatcollpw3lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5767 . . . . . . . . 9 (𝑥 = 𝑦 → dom 𝑥 = dom 𝑦)
21dmeqd 5769 . . . . . . . 8 (𝑥 = 𝑦 → dom dom 𝑥 = dom dom 𝑦)
3 oveq 7156 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑖𝑥𝑗) = (𝑖𝑦𝑗))
43fveq2d 6669 . . . . . . . . 9 (𝑥 = 𝑦 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑦𝑗)))
54fveq1d 6667 . . . . . . . 8 (𝑥 = 𝑦 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑘))
62, 2, 5mpoeq123dv 7223 . . . . . . 7 (𝑥 = 𝑦 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
7 fveq2 6665 . . . . . . . 8 (𝑘 = 𝑙 → ((coe1‘(𝑖𝑦𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑙))
87mpoeq3dv 7227 . . . . . . 7 (𝑘 = 𝑙 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))
96, 8cbvmpov 7243 . . . . . 6 (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑦𝐵, 𝑙𝐼 ↦ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))
10 dmexg 7607 . . . . . . . . . . 11 (𝑦𝐵 → dom 𝑦 ∈ V)
1110dmexd 7609 . . . . . . . . . 10 (𝑦𝐵 → dom dom 𝑦 ∈ V)
1211, 11jca 514 . . . . . . . . 9 (𝑦𝐵 → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V))
1312ad2antrl 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ (𝑦𝐵𝑙𝐼)) → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V))
14 mpoexga 7769 . . . . . . . 8 ((dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
1513, 14syl 17 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ (𝑦𝐵𝑙𝐼)) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
1615ralrimivva 3191 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → ∀𝑦𝐵𝑙𝐼 (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
17 simprr 771 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝐼 ≠ ∅)
18 nn0ex 11897 . . . . . . . 8 0 ∈ V
1918ssex 5218 . . . . . . 7 (𝐼 ⊆ ℕ0𝐼 ∈ V)
2019ad2antrl 726 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝐼 ∈ V)
21 simp3 1134 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
2221adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝑀𝐵)
239, 16, 17, 20, 22mpocurryvald 7930 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑙𝐼𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))))
24 fveq2 6665 . . . . . . . . 9 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑦𝑗))‘𝑙) = ((coe1‘(𝑖𝑦𝑗))‘𝑘))
2524mpoeq3dv 7227 . . . . . . . 8 (𝑙 = 𝑘 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
2625csbeq2dv 3890 . . . . . . 7 (𝑙 = 𝑘𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = 𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
27 eqcom 2828 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
28 eqcom 2828 . . . . . . . . 9 ((𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) ↔ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
296, 27, 283imtr3i 293 . . . . . . . 8 (𝑦 = 𝑥 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3029cbvcsbv 3895 . . . . . . 7 𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))
3126, 30syl6eq 2872 . . . . . 6 (𝑙 = 𝑘𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3231cbvmptv 5162 . . . . 5 (𝑙𝐼𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) = (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3323, 32syl6eq 2872 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
34 dmeq 5767 . . . . . . . . . . 11 (𝑥 = 𝑀 → dom 𝑥 = dom 𝑀)
3534dmeqd 5769 . . . . . . . . . 10 (𝑥 = 𝑀 → dom dom 𝑥 = dom dom 𝑀)
36 oveq 7156 . . . . . . . . . . . 12 (𝑥 = 𝑀 → (𝑖𝑥𝑗) = (𝑖𝑀𝑗))
3736fveq2d 6669 . . . . . . . . . . 11 (𝑥 = 𝑀 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑀𝑗)))
3837fveq1d 6667 . . . . . . . . . 10 (𝑥 = 𝑀 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
3935, 35, 38mpoeq123dv 7223 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
4039adantl 484 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑥 = 𝑀) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
4121, 40csbied 3919 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
42 pmatcollpw.c . . . . . . . . . . . . 13 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2821 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
44 pmatcollpw.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐶)
4542, 43, 44matbas2i 21025 . . . . . . . . . . . 12 (𝑀𝐵𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
46 elmapi 8422 . . . . . . . . . . . 12 (𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃))
47 fdm 6517 . . . . . . . . . . . . . 14 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom 𝑀 = (𝑁 × 𝑁))
4847dmeqd 5769 . . . . . . . . . . . . 13 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom dom 𝑀 = dom (𝑁 × 𝑁))
49 dmxpid 5795 . . . . . . . . . . . . 13 dom (𝑁 × 𝑁) = 𝑁
5048, 49syl6req 2873 . . . . . . . . . . . 12 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → 𝑁 = dom dom 𝑀)
5145, 46, 503syl 18 . . . . . . . . . . 11 (𝑀𝐵𝑁 = dom dom 𝑀)
52513ad2ant3 1131 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 = dom dom 𝑀)
5352adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → 𝑁 = dom dom 𝑀)
54 simpr 487 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
5554oveqd 7167 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
5655fveq2d 6669 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
5756fveq1d 6667 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
5853, 53, 57mpoeq123dv 7223 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
5921, 58csbied 3919 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
6041, 59eqtr4d 2859 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
6160adantr 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
6261mpteq2dv 5155 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
6333, 62eqtrd 2856 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
64 oveq 7156 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
6564adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
6665fveq2d 6669 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
6766fveq1d 6667 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
6867mpoeq3dv 7227 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
6921, 68csbied 3919 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
7069ad2antrr 724 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
71 pmatcollpw3.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
72 eqid 2821 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
73 pmatcollpw3.d . . . . . . 7 𝐷 = (Base‘𝐴)
74 simpll1 1208 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑁 ∈ Fin)
75 simpll2 1209 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑅 ∈ CRing)
76 simp2 1133 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
77 simp3 1134 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
7822adantr 483 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀𝐵)
79783ad2ant1 1129 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
8042, 43, 44, 76, 77, 79matecld 21029 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
81 ssel 3961 . . . . . . . . . . 11 (𝐼 ⊆ ℕ0 → (𝑘𝐼𝑘 ∈ ℕ0))
8281ad2antrl 726 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑘 ∈ ℕ0))
8382imp 409 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑘 ∈ ℕ0)
84833ad2ant1 1129 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
85 eqid 2821 . . . . . . . . 9 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
86 pmatcollpw.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
8785, 43, 86, 72coe1fvalcl 20374 . . . . . . . 8 (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅))
8880, 84, 87syl2anc 586 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅))
8971, 72, 73, 74, 75, 88matbas2d 21026 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)) ∈ 𝐷)
9070, 89eqeltrd 2913 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) ∈ 𝐷)
9190fmpttd 6874 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷)
9273fvexi 6679 . . . . . 6 𝐷 ∈ V
9392a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐷 ∈ V)
9419adantr 483 . . . . 5 ((𝐼 ⊆ ℕ0𝐼 ≠ ∅) → 𝐼 ∈ V)
95 elmapg 8413 . . . . 5 ((𝐷 ∈ V ∧ 𝐼 ∈ V) → ((𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼) ↔ (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷))
9693, 94, 95syl2an 597 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → ((𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼) ↔ (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷))
9791, 96mpbird 259 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼))
9863, 97eqeltrd 2913 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) ∈ (𝐷m 𝐼))
99 fveq1 6664 . . . . . . . . . . 11 (𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
10099adantl 484 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
101100adantr 483 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
102 eqid 2821 . . . . . . . . . . . 12 (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
103 dmexg 7607 . . . . . . . . . . . . . . . . 17 (𝑥𝐵 → dom 𝑥 ∈ V)
104103dmexd 7609 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → dom dom 𝑥 ∈ V)
105104, 104jca 514 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V))
106105ad2antrl 726 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑥𝐵𝑘𝐼)) → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V))
107 mpoexga 7769 . . . . . . . . . . . . . 14 ((dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
108106, 107syl 17 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑥𝐵𝑘𝐼)) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
109108ralrimivva 3191 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∀𝑥𝐵𝑘𝐼 (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
11020adantr 483 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝐼 ∈ V)
11122adantr 483 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝑀𝐵)
112 simpr 487 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝑛𝐼)
113102, 109, 110, 111, 112fvmpocurryd 7931 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀(𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛))
114 df-decpmat 21365 . . . . . . . . . . . . . 14 decompPMat = (𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
115114reseq1i 5844 . . . . . . . . . . . . 13 ( decompPMat ↾ (𝐵 × 𝐼)) = ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼))
116 ssv 3991 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ V
117116a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐵 ⊆ V)
118 simpl 485 . . . . . . . . . . . . . . . 16 ((𝐼 ⊆ ℕ0𝐼 ≠ ∅) → 𝐼 ⊆ ℕ0)
119117, 118anim12i 614 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0))
120119adantr 483 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0))
121 resmpo 7266 . . . . . . . . . . . . . 14 ((𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
122120, 121syl 17 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
123115, 122syl5req 2869 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = ( decompPMat ↾ (𝐵 × 𝐼)))
124123oveqd 7167 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑀(𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
125113, 124eqtrd 2856 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
126125adantlr 713 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
127101, 126eqtrd 2856 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
128127fveq2d 6669 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)))
12921ad2antrr 724 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → 𝑀𝐵)
130 ovres 7308 . . . . . . . . 9 ((𝑀𝐵𝑛𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛))
131129, 130sylan 582 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛))
132131fveq2d 6669 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛)))
133128, 132eqtrd 2856 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛)))
134133oveq2d 7166 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))
135134mpteq2dva 5154 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))
136135oveq2d 7166 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
137136eqeq2d 2832 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
13898, 137rspcedv 3616 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3495  csb 3883  wss 3936  c0 4291  cmpt 5139   × cxp 5548  dom cdm 5550  cres 5552  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  curry ccur 7925  m cmap 8400  Fincfn 8503  0cn0 11891  Basecbs 16477   ·𝑠 cvsca 16563   Σg cgsu 16708  .gcmg 18218  mulGrpcmgp 19233  CRingccrg 19292  var1cv1 20338  Poly1cpl1 20339  coe1cco1 20340   Mat cmat 21010   matToPolyMat cmat2pmat 21306   decompPMat cdecpmat 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-cur 7927  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-pws 16717  df-sra 19938  df-rgmod 19939  df-psr 20130  df-opsr 20134  df-psr1 20342  df-ply1 20344  df-coe1 20345  df-dsmm 20870  df-frlm 20885  df-mat 21011  df-decpmat 21365
This theorem is referenced by:  pmatcollpw3  21386  pmatcollpw3fi  21387
  Copyright terms: Public domain W3C validator