MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3lem Structured version   Visualization version   GIF version

Theorem pmatcollpw3lem 22814
Description: Lemma for pmatcollpw3 22815 and pmatcollpw3fi 22816: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐶,𝑛   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝐼,𝑛   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑛)   𝐷(𝑛)   𝑃(𝑓)   𝑇(𝑛)   (𝑛)

Proof of Theorem pmatcollpw3lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5921 . . . . . . . . 9 (𝑥 = 𝑦 → dom 𝑥 = dom 𝑦)
21dmeqd 5923 . . . . . . . 8 (𝑥 = 𝑦 → dom dom 𝑥 = dom dom 𝑦)
3 oveq 7444 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑖𝑥𝑗) = (𝑖𝑦𝑗))
43fveq2d 6918 . . . . . . . . 9 (𝑥 = 𝑦 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑦𝑗)))
54fveq1d 6916 . . . . . . . 8 (𝑥 = 𝑦 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑘))
62, 2, 5mpoeq123dv 7515 . . . . . . 7 (𝑥 = 𝑦 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
7 fveq2 6914 . . . . . . . 8 (𝑘 = 𝑙 → ((coe1‘(𝑖𝑦𝑗))‘𝑘) = ((coe1‘(𝑖𝑦𝑗))‘𝑙))
87mpoeq3dv 7519 . . . . . . 7 (𝑘 = 𝑙 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))
96, 8cbvmpov 7535 . . . . . 6 (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑦𝐵, 𝑙𝐼 ↦ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)))
10 dmexg 7931 . . . . . . . . . . 11 (𝑦𝐵 → dom 𝑦 ∈ V)
1110dmexd 7933 . . . . . . . . . 10 (𝑦𝐵 → dom dom 𝑦 ∈ V)
1211, 11jca 511 . . . . . . . . 9 (𝑦𝐵 → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V))
1312ad2antrl 728 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ (𝑦𝐵𝑙𝐼)) → (dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V))
14 mpoexga 8110 . . . . . . . 8 ((dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
1513, 14syl 17 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ (𝑦𝐵𝑙𝐼)) → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
1615ralrimivva 3202 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → ∀𝑦𝐵𝑙𝐼 (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) ∈ V)
17 simprr 773 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝐼 ≠ ∅)
18 nn0ex 12539 . . . . . . . 8 0 ∈ V
1918ssex 5330 . . . . . . 7 (𝐼 ⊆ ℕ0𝐼 ∈ V)
2019ad2antrl 728 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝐼 ∈ V)
21 simp3 1139 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
2221adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝑀𝐵)
239, 16, 17, 20, 22mpocurryvald 8303 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑙𝐼𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))))
24 fveq2 6914 . . . . . . . . 9 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑦𝑗))‘𝑙) = ((coe1‘(𝑖𝑦𝑗))‘𝑘))
2524mpoeq3dv 7519 . . . . . . . 8 (𝑙 = 𝑘 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
2625csbeq2dv 3918 . . . . . . 7 (𝑙 = 𝑘𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = 𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)))
27 eqcom 2744 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
28 eqcom 2744 . . . . . . . . 9 ((𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) ↔ (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
296, 27, 283imtr3i 291 . . . . . . . 8 (𝑦 = 𝑥 → (𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3029cbvcsbv 3923 . . . . . . 7 𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑘)) = 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))
3126, 30eqtrdi 2793 . . . . . 6 (𝑙 = 𝑘𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙)) = 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3231cbvmptv 5264 . . . . 5 (𝑙𝐼𝑀 / 𝑦(𝑖 ∈ dom dom 𝑦, 𝑗 ∈ dom dom 𝑦 ↦ ((coe1‘(𝑖𝑦𝑗))‘𝑙))) = (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
3323, 32eqtrdi 2793 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
34 dmeq 5921 . . . . . . . . . . 11 (𝑥 = 𝑀 → dom 𝑥 = dom 𝑀)
3534dmeqd 5923 . . . . . . . . . 10 (𝑥 = 𝑀 → dom dom 𝑥 = dom dom 𝑀)
36 oveq 7444 . . . . . . . . . . . 12 (𝑥 = 𝑀 → (𝑖𝑥𝑗) = (𝑖𝑀𝑗))
3736fveq2d 6918 . . . . . . . . . . 11 (𝑥 = 𝑀 → (coe1‘(𝑖𝑥𝑗)) = (coe1‘(𝑖𝑀𝑗)))
3837fveq1d 6916 . . . . . . . . . 10 (𝑥 = 𝑀 → ((coe1‘(𝑖𝑥𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
3935, 35, 38mpoeq123dv 7515 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
4039adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑥 = 𝑀) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
4121, 40csbied 3949 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
42 pmatcollpw.c . . . . . . . . . . . . 13 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
44 pmatcollpw.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐶)
4542, 43, 44matbas2i 22453 . . . . . . . . . . . 12 (𝑀𝐵𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)))
46 elmapi 8897 . . . . . . . . . . . 12 (𝑀 ∈ ((Base‘𝑃) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃))
47 fdm 6753 . . . . . . . . . . . . . 14 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom 𝑀 = (𝑁 × 𝑁))
4847dmeqd 5923 . . . . . . . . . . . . 13 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → dom dom 𝑀 = dom (𝑁 × 𝑁))
49 dmxpid 5948 . . . . . . . . . . . . 13 dom (𝑁 × 𝑁) = 𝑁
5048, 49eqtr2di 2794 . . . . . . . . . . . 12 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑃) → 𝑁 = dom dom 𝑀)
5145, 46, 503syl 18 . . . . . . . . . . 11 (𝑀𝐵𝑁 = dom dom 𝑀)
52513ad2ant3 1136 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 = dom dom 𝑀)
5352adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → 𝑁 = dom dom 𝑀)
54 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
5554oveqd 7455 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
5655fveq2d 6918 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
5756fveq1d 6916 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
5853, 53, 57mpoeq123dv 7515 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
5921, 58csbied 3949 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
6041, 59eqtr4d 2780 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
6160adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → 𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) = 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
6261mpteq2dv 5253 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑥(𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
6333, 62eqtrd 2777 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) = (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
64 oveq 7444 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
6564adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
6665fveq2d 6918 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
6766fveq1d 6916 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝑘))
6867mpoeq3dv 7519 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
6921, 68csbied 3949 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
7069ad2antrr 726 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)))
71 pmatcollpw3.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
72 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
73 pmatcollpw3.d . . . . . . 7 𝐷 = (Base‘𝐴)
74 simpll1 1213 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑁 ∈ Fin)
75 simpll2 1214 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑅 ∈ CRing)
76 simp2 1138 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
77 simp3 1139 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
7822adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀𝐵)
79783ad2ant1 1134 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
8042, 43, 44, 76, 77, 79matecld 22457 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
81 ssel 3992 . . . . . . . . . . 11 (𝐼 ⊆ ℕ0 → (𝑘𝐼𝑘 ∈ ℕ0))
8281ad2antrl 728 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑘 ∈ ℕ0))
8382imp 406 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑘 ∈ ℕ0)
84833ad2ant1 1134 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → 𝑘 ∈ ℕ0)
85 eqid 2737 . . . . . . . . 9 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
86 pmatcollpw.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
8785, 43, 86, 72coe1fvalcl 22239 . . . . . . . 8 (((𝑖𝑀𝑗) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅))
8880, 84, 87syl2anc 584 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑘) ∈ (Base‘𝑅))
8971, 72, 73, 74, 75, 88matbas2d 22454 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝑘)) ∈ 𝐷)
9070, 89eqeltrd 2841 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑘𝐼) → 𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) ∈ 𝐷)
9190fmpttd 7142 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷)
9273fvexi 6928 . . . . . 6 𝐷 ∈ V
9392a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐷 ∈ V)
9419adantr 480 . . . . 5 ((𝐼 ⊆ ℕ0𝐼 ≠ ∅) → 𝐼 ∈ V)
95 elmapg 8887 . . . . 5 ((𝐷 ∈ V ∧ 𝐼 ∈ V) → ((𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼) ↔ (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷))
9693, 94, 95syl2an 596 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → ((𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼) ↔ (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))):𝐼𝐷))
9791, 96mpbird 257 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑘𝐼𝑀 / 𝑚(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) ∈ (𝐷m 𝐼))
9863, 97eqeltrd 2841 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) ∈ (𝐷m 𝐼))
99 fveq1 6913 . . . . . . . . . . 11 (𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
10099adantl 481 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
101100adantr 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑓𝑛) = ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛))
102 eqid 2737 . . . . . . . . . . . 12 (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
103 dmexg 7931 . . . . . . . . . . . . . . . . 17 (𝑥𝐵 → dom 𝑥 ∈ V)
104103dmexd 7933 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → dom dom 𝑥 ∈ V)
105104, 104jca 511 . . . . . . . . . . . . . . 15 (𝑥𝐵 → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V))
106105ad2antrl 728 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑥𝐵𝑘𝐼)) → (dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V))
107 mpoexga 8110 . . . . . . . . . . . . . 14 ((dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
108106, 107syl 17 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) ∧ (𝑥𝐵𝑘𝐼)) → (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
109108ralrimivva 3202 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ∀𝑥𝐵𝑘𝐼 (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)) ∈ V)
11020adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝐼 ∈ V)
11122adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝑀𝐵)
112 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → 𝑛𝐼)
113102, 109, 110, 111, 112fvmpocurryd 8304 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀(𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛))
114 df-decpmat 22794 . . . . . . . . . . . . . 14 decompPMat = (𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))
115114reseq1i 6000 . . . . . . . . . . . . 13 ( decompPMat ↾ (𝐵 × 𝐼)) = ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼))
116 ssv 4023 . . . . . . . . . . . . . . . . 17 𝐵 ⊆ V
117116a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐵 ⊆ V)
118 simpl 482 . . . . . . . . . . . . . . . 16 ((𝐼 ⊆ ℕ0𝐼 ≠ ∅) → 𝐼 ⊆ ℕ0)
119117, 118anim12i 613 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0))
120119adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0))
121 resmpo 7560 . . . . . . . . . . . . . 14 ((𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
122120, 121syl 17 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((𝑥 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) ↾ (𝐵 × 𝐼)) = (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))))
123115, 122eqtr2id 2790 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘))) = ( decompPMat ↾ (𝐵 × 𝐼)))
124123oveqd 7455 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → (𝑀(𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
125113, 124eqtrd 2777 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
126125adantlr 715 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → ((curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)‘𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
127101, 126eqtrd 2777 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛))
128127fveq2d 6918 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)))
12921ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → 𝑀𝐵)
130 ovres 7606 . . . . . . . . 9 ((𝑀𝐵𝑛𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛))
131129, 130sylan 580 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛) = (𝑀 decompPMat 𝑛))
132131fveq2d 6918 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑀( decompPMat ↾ (𝐵 × 𝐼))𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛)))
133128, 132eqtrd 2777 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑀 decompPMat 𝑛)))
134133oveq2d 7454 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) ∧ 𝑛𝐼) → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))
135134mpteq2dva 5251 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))
136135oveq2d 7454 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))))
137136eqeq2d 2748 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) ∧ 𝑓 = (curry (𝑥𝐵, 𝑘𝐼 ↦ (𝑖 ∈ dom dom 𝑥, 𝑗 ∈ dom dom 𝑥 ↦ ((coe1‘(𝑖𝑥𝑗))‘𝑘)))‘𝑀)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛)))))))
13898, 137rspcedv 3618 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 ⊆ ℕ0𝐼 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷m 𝐼)𝑀 = (𝐶 Σg (𝑛𝐼 ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  wrex 3070  Vcvv 3481  csb 3911  wss 3966  c0 4342  cmpt 5234   × cxp 5691  dom cdm 5693  cres 5695  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  curry ccur 8298  m cmap 8874  Fincfn 8993  0cn0 12533  Basecbs 17254   ·𝑠 cvsca 17311   Σg cgsu 17496  .gcmg 19107  mulGrpcmgp 20161  CRingccrg 20261  var1cv1 22202  Poly1cpl1 22203  coe1cco1 22204   Mat cmat 22436   matToPolyMat cmat2pmat 22735   decompPMat cdecpmat 22793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-ot 4643  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-cur 8300  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-sup 9489  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-hom 17331  df-cco 17332  df-0g 17497  df-prds 17503  df-pws 17505  df-sra 21199  df-rgmod 21200  df-dsmm 21779  df-frlm 21794  df-psr 21956  df-opsr 21960  df-psr1 22206  df-ply1 22208  df-coe1 22209  df-mat 22437  df-decpmat 22794
This theorem is referenced by:  pmatcollpw3  22815  pmatcollpw3fi  22816
  Copyright terms: Public domain W3C validator