Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvopab | Structured version Visualization version GIF version |
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
cbvopab.1 | ⊢ Ⅎ𝑧𝜑 |
cbvopab.2 | ⊢ Ⅎ𝑤𝜑 |
cbvopab.3 | ⊢ Ⅎ𝑥𝜓 |
cbvopab.4 | ⊢ Ⅎ𝑦𝜓 |
cbvopab.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑧 𝑣 = 〈𝑥, 𝑦〉 | |
2 | cbvopab.1 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
3 | 1, 2 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑧(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑤 𝑣 = 〈𝑥, 𝑦〉 | |
5 | cbvopab.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
6 | 4, 5 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑤(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
7 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝑣 = 〈𝑧, 𝑤〉 | |
8 | cbvopab.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
9 | 7, 8 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓) |
10 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑦 𝑣 = 〈𝑧, 𝑤〉 | |
11 | cbvopab.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
12 | 10, 11 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑦(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓) |
13 | opeq12 4811 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
14 | 13 | eqeq2d 2747 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 〈𝑥, 𝑦〉 ↔ 𝑣 = 〈𝑧, 𝑤〉)) |
15 | cbvopab.5 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
16 | 14, 15 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓))) |
17 | 3, 6, 9, 12, 16 | cbvex2v 2340 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)) |
18 | 17 | abbii 2806 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} |
19 | df-opab 5144 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
20 | df-opab 5144 | . 2 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜓} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} | |
21 | 18, 19, 20 | 3eqtr4i 2774 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wex 1779 Ⅎwnf 1783 {cab 2713 〈cop 4571 {copab 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 |
This theorem is referenced by: cbvopabvOLD 5155 dfrel4 6109 bj-opabco 35403 aomclem8 40924 |
Copyright terms: Public domain | W3C validator |