![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > or2expropbilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for or2expropbi 46445 and ich2exprop 46840. (Contributed by AV, 16-Jul-2023.) |
Ref | Expression |
---|---|
or2expropbilem2 | ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑥(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) | |
2 | nfv 1909 | . 2 ⊢ Ⅎ𝑦(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) | |
3 | nfv 1909 | . . 3 ⊢ Ⅎ𝑎〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 | |
4 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑎𝑦 | |
5 | nfsbc1v 3798 | . . . 4 ⊢ Ⅎ𝑎[𝑥 / 𝑎]𝜑 | |
6 | 4, 5 | nfsbcw 3800 | . . 3 ⊢ Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 |
7 | 3, 6 | nfan 1894 | . 2 ⊢ Ⅎ𝑎(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
8 | nfv 1909 | . . 3 ⊢ Ⅎ𝑏〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 | |
9 | nfsbc1v 3798 | . . 3 ⊢ Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 | |
10 | 8, 9 | nfan 1894 | . 2 ⊢ Ⅎ𝑏(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
11 | opeq12 4880 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
12 | 11 | eqeq2d 2739 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉)) |
13 | sbceq1a 3789 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑎]𝜑)) | |
14 | sbceq1a 3789 | . . . 4 ⊢ (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) | |
15 | 13, 14 | sylan9bb 508 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
16 | 12, 15 | anbi12d 630 | . 2 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))) |
17 | 1, 2, 7, 10, 16 | cbvex2v 2335 | 1 ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 [wsbc 3778 〈cop 4638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 |
This theorem is referenced by: or2expropbi 46445 ich2exprop 46840 |
Copyright terms: Public domain | W3C validator |