Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > or2expropbilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for or2expropbi 44415 and ich2exprop 44811. (Contributed by AV, 16-Jul-2023.) |
Ref | Expression |
---|---|
or2expropbilem2 | ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑦(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) | |
3 | nfv 1918 | . . 3 ⊢ Ⅎ𝑎〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 | |
4 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑎𝑦 | |
5 | nfsbc1v 3731 | . . . 4 ⊢ Ⅎ𝑎[𝑥 / 𝑎]𝜑 | |
6 | 4, 5 | nfsbcw 3733 | . . 3 ⊢ Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 |
7 | 3, 6 | nfan 1903 | . 2 ⊢ Ⅎ𝑎(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
8 | nfv 1918 | . . 3 ⊢ Ⅎ𝑏〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 | |
9 | nfsbc1v 3731 | . . 3 ⊢ Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 | |
10 | 8, 9 | nfan 1903 | . 2 ⊢ Ⅎ𝑏(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
11 | opeq12 4803 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
12 | 11 | eqeq2d 2749 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉)) |
13 | sbceq1a 3722 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑎]𝜑)) | |
14 | sbceq1a 3722 | . . . 4 ⊢ (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) | |
15 | 13, 14 | sylan9bb 509 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
16 | 12, 15 | anbi12d 630 | . 2 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))) |
17 | 1, 2, 7, 10, 16 | cbvex2v 2344 | 1 ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 [wsbc 3711 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: or2expropbi 44415 ich2exprop 44811 |
Copyright terms: Public domain | W3C validator |