![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > or2expropbilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for or2expropbi 46043 and ich2exprop 46438. (Contributed by AV, 16-Jul-2023.) |
Ref | Expression |
---|---|
or2expropbilem2 | ⊢ (∃𝑎∃𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . 2 ⊢ Ⅎ𝑥(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) | |
2 | nfv 1916 | . 2 ⊢ Ⅎ𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) | |
3 | nfv 1916 | . . 3 ⊢ Ⅎ𝑎⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ | |
4 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑎𝑦 | |
5 | nfsbc1v 3797 | . . . 4 ⊢ Ⅎ𝑎[𝑥 / 𝑎]𝜑 | |
6 | 4, 5 | nfsbcw 3799 | . . 3 ⊢ Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 |
7 | 3, 6 | nfan 1901 | . 2 ⊢ Ⅎ𝑎(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
8 | nfv 1916 | . . 3 ⊢ Ⅎ𝑏⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ | |
9 | nfsbc1v 3797 | . . 3 ⊢ Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 | |
10 | 8, 9 | nfan 1901 | . 2 ⊢ Ⅎ𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
11 | opeq12 4875 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩) | |
12 | 11 | eqeq2d 2742 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)) |
13 | sbceq1a 3788 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑎]𝜑)) | |
14 | sbceq1a 3788 | . . . 4 ⊢ (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) | |
15 | 13, 14 | sylan9bb 509 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
16 | 12, 15 | anbi12d 630 | . 2 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))) |
17 | 1, 2, 7, 10, 16 | cbvex2v 2339 | 1 ⊢ (∃𝑎∃𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 [wsbc 3777 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: or2expropbi 46043 ich2exprop 46438 |
Copyright terms: Public domain | W3C validator |