Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  or2expropbilem2 Structured version   Visualization version   GIF version

Theorem or2expropbilem2 47063
Description: Lemma 2 for or2expropbi 47064 and ich2exprop 47501. (Contributed by AV, 16-Jul-2023.)
Assertion
Ref Expression
or2expropbilem2 (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑎,𝑏,𝑥,𝑦   𝜑,𝑥,𝑦   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)

Proof of Theorem or2expropbilem2
StepHypRef Expression
1 nfv 1915 . 2 𝑥(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑)
2 nfv 1915 . 2 𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑)
3 nfv 1915 . . 3 𝑎𝐴, 𝐵⟩ = ⟨𝑥, 𝑦
4 nfcv 2894 . . . 4 𝑎𝑦
5 nfsbc1v 3761 . . . 4 𝑎[𝑥 / 𝑎]𝜑
64, 5nfsbcw 3763 . . 3 𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜑
73, 6nfan 1900 . 2 𝑎(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)
8 nfv 1915 . . 3 𝑏𝐴, 𝐵⟩ = ⟨𝑥, 𝑦
9 nfsbc1v 3761 . . 3 𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜑
108, 9nfan 1900 . 2 𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)
11 opeq12 4827 . . . 4 ((𝑎 = 𝑥𝑏 = 𝑦) → ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩)
1211eqeq2d 2742 . . 3 ((𝑎 = 𝑥𝑏 = 𝑦) → (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩))
13 sbceq1a 3752 . . . 4 (𝑎 = 𝑥 → (𝜑[𝑥 / 𝑎]𝜑))
14 sbceq1a 3752 . . . 4 (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜑[𝑦 / 𝑏][𝑥 / 𝑎]𝜑))
1513, 14sylan9bb 509 . . 3 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝜑[𝑦 / 𝑏][𝑥 / 𝑎]𝜑))
1612, 15anbi12d 632 . 2 ((𝑎 = 𝑥𝑏 = 𝑦) → ((⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)))
171, 2, 7, 10, 16cbvex2v 2344 1 (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  [wsbc 3741  cop 4582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583
This theorem is referenced by:  or2expropbi  47064  ich2exprop  47501
  Copyright terms: Public domain W3C validator