Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > or2expropbilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for or2expropbi 44528 and ich2exprop 44923. (Contributed by AV, 16-Jul-2023.) |
Ref | Expression |
---|---|
or2expropbilem2 | ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) | |
2 | nfv 1917 | . 2 ⊢ Ⅎ𝑦(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) | |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑎〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 | |
4 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑎𝑦 | |
5 | nfsbc1v 3736 | . . . 4 ⊢ Ⅎ𝑎[𝑥 / 𝑎]𝜑 | |
6 | 4, 5 | nfsbcw 3738 | . . 3 ⊢ Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 |
7 | 3, 6 | nfan 1902 | . 2 ⊢ Ⅎ𝑎(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
8 | nfv 1917 | . . 3 ⊢ Ⅎ𝑏〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 | |
9 | nfsbc1v 3736 | . . 3 ⊢ Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎]𝜑 | |
10 | 8, 9 | nfan 1902 | . 2 ⊢ Ⅎ𝑏(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑) |
11 | opeq12 4806 | . . . 4 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
12 | 11 | eqeq2d 2749 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉)) |
13 | sbceq1a 3727 | . . . 4 ⊢ (𝑎 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑎]𝜑)) | |
14 | sbceq1a 3727 | . . . 4 ⊢ (𝑏 = 𝑦 → ([𝑥 / 𝑎]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) | |
15 | 13, 14 | sylan9bb 510 | . . 3 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
16 | 12, 15 | anbi12d 631 | . 2 ⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑))) |
17 | 1, 2, 7, 10, 16 | cbvex2v 2342 | 1 ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 [wsbc 3716 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: or2expropbi 44528 ich2exprop 44923 |
Copyright terms: Public domain | W3C validator |