MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12 Structured version   Visualization version   GIF version

Theorem cbvoprab12 7226
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
cbvoprab12.1 𝑤𝜑
cbvoprab12.2 𝑣𝜑
cbvoprab12.3 𝑥𝜓
cbvoprab12.4 𝑦𝜓
cbvoprab12.5 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab12 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem cbvoprab12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑤 𝑢 = ⟨𝑥, 𝑦
2 cbvoprab12.1 . . . . 5 𝑤𝜑
31, 2nfan 1900 . . . 4 𝑤(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
4 nfv 1915 . . . . 5 𝑣 𝑢 = ⟨𝑥, 𝑦
5 cbvoprab12.2 . . . . 5 𝑣𝜑
64, 5nfan 1900 . . . 4 𝑣(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
7 nfv 1915 . . . . 5 𝑥 𝑢 = ⟨𝑤, 𝑣
8 cbvoprab12.3 . . . . 5 𝑥𝜓
97, 8nfan 1900 . . . 4 𝑥(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)
10 nfv 1915 . . . . 5 𝑦 𝑢 = ⟨𝑤, 𝑣
11 cbvoprab12.4 . . . . 5 𝑦𝜓
1210, 11nfan 1900 . . . 4 𝑦(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)
13 opeq12 4770 . . . . . 6 ((𝑥 = 𝑤𝑦 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑣⟩)
1413eqeq2d 2812 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝑢 = ⟨𝑥, 𝑦⟩ ↔ 𝑢 = ⟨𝑤, 𝑣⟩))
15 cbvoprab12.5 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
1614, 15anbi12d 633 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑣) → ((𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)))
173, 6, 9, 12, 16cbvex2v 2357 . . 3 (∃𝑥𝑦(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑤𝑣(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓))
1817opabbii 5100 . 2 {⟨𝑢, 𝑧⟩ ∣ ∃𝑥𝑦(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑢, 𝑧⟩ ∣ ∃𝑤𝑣(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)}
19 dfoprab2 7195 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑢, 𝑧⟩ ∣ ∃𝑥𝑦(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
20 dfoprab2 7195 . 2 {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑢, 𝑧⟩ ∣ ∃𝑤𝑣(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)}
2118, 19, 203eqtr4i 2834 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wnf 1785  cop 4534  {copab 5095  {coprab 7140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-opab 5096  df-oprab 7143
This theorem is referenced by:  cbvoprab12v  7227  cbvmpox  7230  dfoprab4f  7740  fmpox  7751  tposoprab  7915  f1od2  30487  cbvmpox2  44734
  Copyright terms: Public domain W3C validator