| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvoprab12 | Structured version Visualization version GIF version | ||
| Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| cbvoprab12.1 | ⊢ Ⅎ𝑤𝜑 |
| cbvoprab12.2 | ⊢ Ⅎ𝑣𝜑 |
| cbvoprab12.3 | ⊢ Ⅎ𝑥𝜓 |
| cbvoprab12.4 | ⊢ Ⅎ𝑦𝜓 |
| cbvoprab12.5 | ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvoprab12 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑤 𝑢 = 〈𝑥, 𝑦〉 | |
| 2 | cbvoprab12.1 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
| 3 | 1, 2 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑤(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑣 𝑢 = 〈𝑥, 𝑦〉 | |
| 5 | cbvoprab12.2 | . . . . 5 ⊢ Ⅎ𝑣𝜑 | |
| 6 | 4, 5 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑣(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 = 〈𝑤, 𝑣〉 | |
| 8 | cbvoprab12.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 9 | 7, 8 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
| 10 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 𝑢 = 〈𝑤, 𝑣〉 | |
| 11 | cbvoprab12.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 12 | 10, 11 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
| 13 | opeq12 4856 | . . . . . 6 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑣〉) | |
| 14 | 13 | eqeq2d 2747 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝑢 = 〈𝑥, 𝑦〉 ↔ 𝑢 = 〈𝑤, 𝑣〉)) |
| 15 | cbvoprab12.5 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) | |
| 16 | 14, 15 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → ((𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓))) |
| 17 | 3, 6, 9, 12, 16 | cbvex2v 2346 | . . 3 ⊢ (∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)) |
| 18 | 17 | opabbii 5191 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} |
| 19 | dfoprab2 7470 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 20 | dfoprab2 7470 | . 2 ⊢ {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} | |
| 21 | 18, 19, 20 | 3eqtr4i 2769 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 〈cop 4612 {copab 5186 {coprab 7411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-oprab 7414 |
| This theorem is referenced by: cbvmpox 7505 dfoprab4f 8060 fmpox 8071 tposoprab 8266 f1od2 32703 cbvmpox2 48278 |
| Copyright terms: Public domain | W3C validator |