MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12 Structured version   Visualization version   GIF version

Theorem cbvoprab12 7522
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
cbvoprab12.1 𝑤𝜑
cbvoprab12.2 𝑣𝜑
cbvoprab12.3 𝑥𝜓
cbvoprab12.4 𝑦𝜓
cbvoprab12.5 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab12 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem cbvoprab12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . . 5 𝑤 𝑢 = ⟨𝑥, 𝑦
2 cbvoprab12.1 . . . . 5 𝑤𝜑
31, 2nfan 1897 . . . 4 𝑤(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
4 nfv 1912 . . . . 5 𝑣 𝑢 = ⟨𝑥, 𝑦
5 cbvoprab12.2 . . . . 5 𝑣𝜑
64, 5nfan 1897 . . . 4 𝑣(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
7 nfv 1912 . . . . 5 𝑥 𝑢 = ⟨𝑤, 𝑣
8 cbvoprab12.3 . . . . 5 𝑥𝜓
97, 8nfan 1897 . . . 4 𝑥(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)
10 nfv 1912 . . . . 5 𝑦 𝑢 = ⟨𝑤, 𝑣
11 cbvoprab12.4 . . . . 5 𝑦𝜓
1210, 11nfan 1897 . . . 4 𝑦(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)
13 opeq12 4880 . . . . . 6 ((𝑥 = 𝑤𝑦 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑣⟩)
1413eqeq2d 2746 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝑢 = ⟨𝑥, 𝑦⟩ ↔ 𝑢 = ⟨𝑤, 𝑣⟩))
15 cbvoprab12.5 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
1614, 15anbi12d 632 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑣) → ((𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)))
173, 6, 9, 12, 16cbvex2v 2345 . . 3 (∃𝑥𝑦(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑤𝑣(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓))
1817opabbii 5215 . 2 {⟨𝑢, 𝑧⟩ ∣ ∃𝑥𝑦(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑢, 𝑧⟩ ∣ ∃𝑤𝑣(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)}
19 dfoprab2 7491 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑢, 𝑧⟩ ∣ ∃𝑥𝑦(𝑢 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
20 dfoprab2 7491 . 2 {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑢, 𝑧⟩ ∣ ∃𝑤𝑣(𝑢 = ⟨𝑤, 𝑣⟩ ∧ 𝜓)}
2118, 19, 203eqtr4i 2773 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wnf 1780  cop 4637  {copab 5210  {coprab 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-oprab 7435
This theorem is referenced by:  cbvmpox  7526  dfoprab4f  8080  fmpox  8091  tposoprab  8286  f1od2  32739  cbvmpox2  48181
  Copyright terms: Public domain W3C validator