![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvoprab12 | Structured version Visualization version GIF version |
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
cbvoprab12.1 | ⊢ Ⅎ𝑤𝜑 |
cbvoprab12.2 | ⊢ Ⅎ𝑣𝜑 |
cbvoprab12.3 | ⊢ Ⅎ𝑥𝜓 |
cbvoprab12.4 | ⊢ Ⅎ𝑦𝜓 |
cbvoprab12.5 | ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvoprab12 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑤 𝑢 = 〈𝑥, 𝑦〉 | |
2 | cbvoprab12.1 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
3 | 1, 2 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑤(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑣 𝑢 = 〈𝑥, 𝑦〉 | |
5 | cbvoprab12.2 | . . . . 5 ⊢ Ⅎ𝑣𝜑 | |
6 | 4, 5 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑣(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
7 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 = 〈𝑤, 𝑣〉 | |
8 | cbvoprab12.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
9 | 7, 8 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑥(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
10 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑦 𝑢 = 〈𝑤, 𝑣〉 | |
11 | cbvoprab12.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
12 | 10, 11 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑦(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
13 | opeq12 4880 | . . . . . 6 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑣〉) | |
14 | 13 | eqeq2d 2739 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝑢 = 〈𝑥, 𝑦〉 ↔ 𝑢 = 〈𝑤, 𝑣〉)) |
15 | cbvoprab12.5 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) | |
16 | 14, 15 | anbi12d 630 | . . . 4 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → ((𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓))) |
17 | 3, 6, 9, 12, 16 | cbvex2v 2335 | . . 3 ⊢ (∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)) |
18 | 17 | opabbii 5219 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} |
19 | dfoprab2 7484 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
20 | dfoprab2 7484 | . 2 ⊢ {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} | |
21 | 18, 19, 20 | 3eqtr4i 2766 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 Ⅎwnf 1777 〈cop 4638 {copab 5214 {coprab 7427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-opab 5215 df-oprab 7430 |
This theorem is referenced by: cbvoprab12v 7516 cbvmpox 7519 dfoprab4f 8066 fmpox 8077 tposoprab 8274 f1od2 32524 cbvmpox2 47477 |
Copyright terms: Public domain | W3C validator |